
 

 

 

 
(FP7 614100) 

 

 

D7.4.2 Final Design and implementation of the IoT Event 
Debugging Tool 

 

 2016-04-08 – Version 1.0  

 

 

 

 

 

 

 

 

 

 

 

Published by the IMPReSS Consortium  

 

Dissemination Level: Public 

 

  
 

 
 

Project co-funded by the European Commission within the 7th Framework Programme and 
the Conselho Nacional de Desenvolvimento Científico e Tecnológico 

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm


IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 2 of 61 Submission date: 2016-03-31 

 

Document control page 
Document file: 

D7_4_2_Final_Design_and_implementation_of_the_IoT_EventDebugging_Tool.doc 

Document version: 1.0 

Document owner: Peeter Kool (CNET) 

 

Work package: WP7 – IDE Framework for Model-driven development 

Task: T7.5 – IoT Event Debugging Tools  

Deliverable type: P 

 

Document status: x  approved by the document owner for internal review 

 x  approved for submission to the EC 

 

 

Document history: 

 

Version Author(s) Date Summary of changes made 

0.1 Peeter Kool (CNET) 2015-12-01 Initial ToC 

0.5  Peeter Kool, Peter Rosengren 

(CNET) 

2015-12-20 Initial Content 

0.9 Peeter Kool (CNET) 2016-04-08 Additional content, editing and spell 

check, versions for internal review 

1.0 Peter Rosengren, Peeter Kool 

(CNET) 

2016-04-08 Final version submitted to the European 

Commission 

 

 

 

Internal review history: 

 

Reviewed by Date Summary of comments 

Marc Jentsch (FIT) 2016-04-08 Accepted 

   

 

Legal Notice 

The information in this document is subject to change without notice. 

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document, 

including, but not limited to, the implied warranties of merchantability and fitness for a particular 
purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein 

or direct, indirect, special, incidental or consequential damages in connection with the furnishing, 
performance, or use of this material. 

Possible inaccuracies of information are under the responsibility of the project. This report reflects 

solely the views of its authors. The European Commission is not liable for any use that may be made of 
the information contained therein. 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 3 of 61 Submission date: 2016-03-31 

 

Index: 
 

1. Executive summary ................................................................................. 8 

2. Introduction ............................................................................................ 9 

3. Developer Tools for event based LinkSmart systems ............................. 10 

3.1 Windows LinkSmart Event Manager ........................................................ 10 

3.2 Event Trace and Debug Tool (ETDT) ........................................................ 11 

3.2.1  Event Manager Eavesdrop ........................................................ 12 

3.2.2  Event Network Browser ............................................................ 17 

4. Conclusions ........................................................................................... 21 

5. Class Documentation ............................................................................. 22 

5.1 EventQuery::EventQuery Class Reference ................................................ 22 

Public Member Functions ....................................................................... 22 

Detailed Description .............................................................................. 22 

Constructor & Destructor Documentation ................................................. 22 

Member Function Documentation ............................................................ 23 

5.2 IoTWCFServiceLibrary::EventQueryServiceWS Class Reference .................. 25 

Public Member Functions ....................................................................... 25 

Private Attributes ................................................................................. 25 

Constructor & Destructor Documentation ................................................. 25 

Member Function Documentation ............................................................ 25 

Member Data Documentation ................................................................. 26 

5.3 IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService 

Interface Reference .............................................................................. 27 

Public Member Functions ....................................................................... 27 

Member Function Documentation ............................................................ 27 

5.4 EventTraceAndDebugTool::DataBaseReader Class Reference ..................... 27 

Public Member Functions ....................................................................... 27 

Properties ............................................................................................ 28 

Private Member Functions ...................................................................... 28 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 4 of 61 Submission date: 2016-03-31 

 

Private Attributes ................................................................................. 28 

Detailed Description .............................................................................. 29 

Member Function Documentation ............................................................ 29 

Member Data Documentation ................................................................. 30 

Property Documentation ........................................................................ 30 

5.5 EventDB::EventDB Class Reference ........................................................ 31 

Public Member Functions ....................................................................... 31 

Public Attributes ................................................................................... 31 

Private Attributes ................................................................................. 31 

Detailed Description .............................................................................. 31 

Constructor & Destructor Documentation ................................................. 32 

Member Function Documentation ............................................................ 32 

Member Data Documentation ................................................................. 32 

Member Data Documentation ................................................................. 33 

5.6 EventReceiver::EventReceiver Class Reference ......................................... 34 

Public Member Functions ....................................................................... 34 

Public Attributes ................................................................................... 34 

Private Member Functions ...................................................................... 34 

Private Attributes ................................................................................. 35 

Member Function Documentation ............................................................ 35 

Member Data Documentation ................................................................. 37 

5.7 EventReceiver::EventReceiverService Class Reference .............................. 38 

Public Member Functions ....................................................................... 38 

Public Attributes ................................................................................... 38 

Private Member Functions ...................................................................... 38 

Private Attributes ................................................................................. 38 

Member Function Documentation ............................................................ 39 

Member Data Documentation ................................................................. 40 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 5 of 61 Submission date: 2016-03-31 

 

5.8 EventSubscriberClient Class Reference .................................................... 41 

Public Member Functions ....................................................................... 41 

Constructor & Destructor Documentation ................................................. 41 

Member Function Documentation ............................................................ 42 

5.9 EventQueue::MSMQ Class Reference ....................................................... 43 

Public Member Functions ....................................................................... 43 

Properties ............................................................................................ 43 

Private Member Functions ...................................................................... 43 

Private Attributes ................................................................................. 43 

Detailed Description .............................................................................. 44 

Constructor & Destructor Documentation ................................................. 44 

Member Function Documentation ............................................................ 44 

Member Data Documentation ................................................................. 45 

Property Documentation ........................................................................ 45 

5.10 EventQueue::Queue Interface Reference ......................................... 46 

Public Member Functions ....................................................................... 46 

Properties ............................................................................................ 46 

Detailed Description .............................................................................. 46 

Constructor & Destructor Documentation ................................................. 46 

Member Function Documentation ............................................................ 47 

Property Documentation ........................................................................ 48 

5.11 EventTraceAndDebugTool::RESTServer Class Reference .................... 49 

Public Member Functions ....................................................................... 49 

Static Public Member Functions .............................................................. 49 

Static Private Member Functions ............................................................. 49 

Private Attributes ................................................................................. 49 

Member Function Documentation ............................................................ 50 

Member Data Documentation ................................................................. 52 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 6 of 61 Submission date: 2016-03-31 

 

5.12 IoT::EventPayloadParser Class Reference (New) ............................... 53 

Public Member Functions ....................................................................... 53 

Private Attributes ................................................................................. 53 

Detailed Description .............................................................................. 53 

Constructor & Destructor Documentation ................................................. 53 

Member Function Documentation ............................................................ 54 

Member Data Documentation ................................................................. 54 

5.13 IoT::Mqtt::MqttEventArgs Class Reference (New) ............................. 55 

Public Member Functions ....................................................................... 55 

Public Attributes ................................................................................... 55 

Detailed Description .............................................................................. 55 

Constructor & Destructor Documentation ................................................. 55 

Member Data Documentation ................................................................. 55 

5.14 IoT::MqttEventReciever Class Reference (New)................................. 56 

Public Member Functions ....................................................................... 56 

Private Attributes ................................................................................. 56 

Detailed Description .............................................................................. 56 

Member Function Documentation ............................................................ 56 

Member Data Documentation ................................................................. 57 

5.15 IoT::Mqtt::MqttListener Class Reference(New) ................................. 58 

Public Member Functions ....................................................................... 58 

Public Attributes ................................................................................... 58 

Private Member Functions ...................................................................... 58 

Private Attributes ................................................................................. 58 

Detailed Description .............................................................................. 58 

Constructor & Destructor Documentation ................................................. 59 

Member Function Documentation ............................................................ 59 

Member Data Documentation ................................................................. 60 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 7 of 61 Submission date: 2016-03-31 

 

6. References ............................................................................................ 61 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 8 of 61 Submission date: 2016-03-31 

 

1. Executive summary 

This deliverable describes the final prototype deliverable developed within task T7.5 IoT Event 
Debugging Tools.  

The first section is a short introduction. The second section gives an overview of the Event 
Debugging Tools and their functionality. Finally, there is a section with class documentation of the 

most important classes. The additions and changes made from the initial prototype are 

highlighted in the introduction. 

 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 9 of 61 Submission date: 2016-03-31 

 

2. Introduction 

The aim of the task T7.5 IoT Event Debugging Tools is to develop a high-level debugging tool 

which allows developers to trace events and interactions between distributed components. Event 
Management is a crucial function in the IoT ecosystem in general enabling both loosely coupled 

communications and data management. In highly distributed systems involving large numbers of 
devices and actors, the possibility of doing event traceability and debugging are important. For 

this reason, the IMPReSS platform researches and designs mechanisms and tools that support the 
developers tracing and debugging event patterns and event history, using the LinkSmart event 

processing architecture as well as the added possibility of using MQTT brokers. 

The main additions made in-between the initial and final prototype are the following: 

 Support for MQTT (MQTT, 2016) brokers in addition to LinkSmart Event Manager 

 Support for JSON based payloads 

 Support for defining payload structure, i.e. the tool extract information from the actual 

payload. 

All of these changes involve the Event Trace and Debug Tool which is described in section 3.2. 
The reason for the addition of MQTT as a supported event protocol is that MQTT has gained a lot 

of popularity and is therefore is widely used. Additionally, there is wide support of client 

implementations even for lightweight platforms such as Arduino. In IMPReSS we decided use 
MQTT in order to be able to support as wide range of devices and software as possible and 

therefore the tool needed to support it as well. 

In order to support lightweight platforms, it was deemed necessary to add management of event 

payload format in JSON. This was also natural because REST with JSON is used as the API in-

between the different IMPReSS components.  

Finally, because the addition of the JSON format, which lacks a formal schema, functionality to 

extract different attributes from the event payload, such as event ID or sensor ID. The language 
that is used for defining the attribute extractions is a simplified variant of Xpath. The expressions 

work with both XML and JSON payloads. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 10 of 61 Submission date: 2016-03-31 

 

3. Developer Tools for event based LinkSmart systems 

In the first sub section the existing Windows LinkSmart Event Manager is described briefly with 

regards to the current debugging and tracing possibilities. The second sub section describes the 
current state of the Event Trace and Debug Tool developed within IMPReSS including the 

architecture of the tool. 

3.1 Windows LinkSmart Event Manager 

The windows based LinkSmart event manager provides a visual tool that controls the LinkSmart 

event manager and also shows it status, see Figure 1. The main purpose of the tool is to provide 
information of what’s currently going on with the event manager if there are any communication 

errors or that a subscriber is not responding properly. 

 

 

Figure 1: Windows LinkSmart event manager 

 

In the tool it is possible to stop and start the event manager, remove all subscriptions and to clear 
the all other HIDs that match the description of the event manager. The last function is very 

useful when debugging to avoid problems with dead HIDs. The tool window it also shows the 

status and current settings of the Event Manager: 

 Description: The description the Event Manager uses when it registers at the Network 

Manager. 

 HID: The HID for the Event Manager. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 11 of 61 Submission date: 2016-03-31 

 

 Address: The endpoint where the Event Manager Web Service is published 

When a subscriber subscribes to events the information will be shown in the console window in 

the tool, see Figure 2 below. 

 

Figure 2: Subscription created and removed 

 

When a subscription is removed it will also be displayed in the console window inside the tool. 

The information shown when a subscription is created or removed are: 

 The HID of the subscriber, i.e. which client it is. 

 The Topic of the subscription, i.e. what events it listens to 

Errors that occur when the Event Manager distributes events will also be shown in the console. In 

this case the actual exception message will be shown.  

 

3.2 Event Trace and Debug Tool (ETDT) 

There are two basic parts of the Event Trace Debug Tool: 

 Event Manager Eavesdrop: Provides the functionality to listen to and process all events 

that pass through an Event Manager. This also contains a simple browser with query 
capabilities. 

 Event Network Browser: Provides functionality to query individual event consumers and 

producers which events they have produced and consumed. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 12 of 61 Submission date: 2016-03-31 

 

3.2.1  Event Manager Eavesdrop 

The Event Trace and debug tool provides the capabilities of eavesdropping on all event 
communication at an event manager. This tool is not part of the event manager like the Windows 

Event Manager described in the previous section, instead it as run side by side with the LinkSmart 

Event Manager and can be turned off/on completely independently, see Figure 3. 

 

LinkSmart Event Manager

Event Producer Event Producer Event Producer

Event Consumer Event Consumer Event Consumer

Event Trace and Debug Tool

 

Figure 3: LinkSmart and the Event Trace and Debug Tool 

The Event Trace and Debug Tool act as a normal event consumer from the LinkSmart Event 

Manager but it listens to all events that pass through the Event Manager without any filtering.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 13 of 61 Submission date: 2016-03-31 

 

MQTT Broker

MQTT Event Consumer MQTT Event Consumer MQTT Event Consumer

MQTT Event Consumer MQTT Event Consumer MQTT Event Consumer

Event Trace and Debug Tool

 

Figure 4: MQTT and the Event Trace and Debug Tool 

Using an MQTT Broker, the Event Trace and Debug Tool act as a normal event consumer from 
the Broker but it listens to all events that pass through the Broker without any filtering. There is a 

possibility to set a filter, for instance if the broker is managing multiple applications. For MQTT the 
same requirements exist as for LinkSmart Based Eventing, i.e. it needs to be non-intrusive.  

Because of these requirements it is essential that the Event Trace and Debug Tool is well behaved 

and does not introduce problems by listening, i.e. it should be transparent for the system and the 
system behavior should not change when the ETDT is used. 

The inner architecture of ETDT reflects this by trying to be as efficient as possible. LinkSmart 
Event Manager and MQTT Brokers can be handling a large number of events per seconds and 

therefore the ETDT must also be fast in its processing of events in order not to unnecessarily load 

the Event Manager, see Figure 5. 

 

 

  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 14 of 61 Submission date: 2016-03-31 

 

Event Trace And Debug Tool

LinkSmart 
EventReceiver

EventQueue

EventDBLinkSmart Events

Query and User 
Interface

Event Network 
Browser 

MQTT Client 
EventReceiver

MQTT Events

Event Payload Parser

 

Figure 5: Inner architecture of the ETDT 

 

The main components in the ETDT are: 

 LinkSmart Event Receiver:  Listens to the events. As soon as an event arrives it will 

queue in the EventQueue without any other processing. 

 MQTT Client Event Receiver: Listen to the mqtt events. Events will immediately be 

sent to the Event Queue without any processing. 

 EventQueue: Acts as a buffer in between the persistent store and incoming events. It 

uses MSMQ as mechanism guarantying that no events are lost.  

 Event Payload Parser: Extracts information from the payload, such as event ID, sensor 

ID and timestamp and repacks it so it can be stored in the event database. 

 EventDB: Manages the persistent store of events and provides interfaces to query the 

stored events database. The default implementation uses SQLite for storage, but this can 
be changed to in memory databases etc. 

 Query and User Interface: Is the actual consumer of the stored event data. 

 Event Network Browser: This part is explained in 3.2.2  Event Network Browser 

 

The ETDT provides a web based user interface that can be used with any ordinary web browser, 

see Figure 6. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 15 of 61 Submission date: 2016-03-31 

 

 

Figure 6: ETDT web based user interface 

 The tool presents the events always with the newest events first and always in the exact order 
they have arrived to the tool. The page also contains filters that one can apply for selecting 

events. An example of this is shown in Figure 7. 

 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 16 of 61 Submission date: 2016-03-31 

 

Figure 7: Example of a filter 

Here the user has selected to filter on the contents of the events by filling in “12”. The user 
interface will reflect this by only showing events that contain this information. The properties that 

can be filtered currently are: 

 StartDate: The earliest date and time of the event. 

 EndDate: The earliest date and time of the event. 

 Topic: Any part of the Topic should contain the entered string.  

 Content: Any part of the Event content should contain the entered string.  

There are two more buttons available in the user interface which can be useful when dealing with 

events: 

 CLEAR EVENTS: Will clear the database of all previous events making it empty. 

 BACKUP EVENTS: This will create a backup of the database currently in use. This 

backup can be used for further analysis with other tools. An interesting option is that this 
backup can be used for replaying the events in the exact order that they occurred which 

can be useful for simulation. The database backup is in SQLite 3 format which can easily 
be exported to other formats. 

Finally there is a link on the ID for each event. Clicking this link will gather the full information 
about the event which will be returned in an XML structure, see Listing 1. 

 

 

<?xml version="1.0" encoding="utf-8"?> 

<EventStructure xmlns="http://events.linksmart.org/EpaEvent" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

  <EventMeta> 

    <EventType modelRef="IMPRESSEvent">CHANGE_SENSOR_VALUE</EventType> 

    <EventID>c2562eb6-4b70-440d-83a4-fc24919b00c6</EventID> 

    <Topic modelRef="IMPRESS">CHANGE_SENSOR_VALUE</Topic> 

    <Timestamp>2014-02-24T13:10:12.6299322+01:00</Timestamp> 

    <Comment /> 

    <Source> 

      <Location /> 

      <ObjectID modelRef=”IMPRESS”>SENSOR_ID_21</ObjectID> 

      <ProcessID /> 

    </Source> 

  </EventMeta> 

  <Content modelRef=""> 

    <event topic="CHANGE_SENSOR_VALUE" xmlns=""> 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 17 of 61 Submission date: 2016-03-31 

 

      <tuple> 

        <key>HEAT</key> 

        <value>12</value> 

      </tuple> 

    </event> 

  </Content> 

</EventStructure> 

 

Listing 1: The full event structure in XML 

 

As can be seen all elements do not have value, these are optional and depends on the original 
event producer if they will have values. In the example above we do not have any information 

regarding the actual Location of the event because it is not supplied by the event producer. 

 

3.2.2  Event Network Browser  

The Event Network Browser part of the Event Trace and Debugging Tool provides functionality to 
look inside individual event producers and consumers to see which events they have created 

and/or consumed. This is very useful when debugging complex event problems where it is not 
clear who created the event and who consumed it. Typically this functionality can be used to pin 

point which component is not behaving as expected, i.e. not consuming the correct events or not 

creating the correct events. 

The Event Network Browser part uses functionality in LinkSmart to find and connect to the 

different event consumers and producers that are part of the LinkSmart network, see Figure 8 
below. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 18 of 61 Submission date: 2016-03-31 

 

Local LinkSmart IoTGateway

Event Producer
(LinkSmart IoT Based)

Event Producer
(LinkSmart IoT Based)

Event Producer

Event Consumer
(LinkSmart IoT Based)

Event Consumer

Event Trace and Debug Tool

Application IoT Resource Catalogue

Event Consumer
(LinkSmart IoT Based)

LinkSmart Event Manager

 

Figure 8: Overview of the architecture of the Event Network Browser architecture 

The basic principle used by the Event Network Browser is that it uses the Application IoT 
Resource Catalogue, which is part of LinkSmart, to find all the LinkSmart based event producers 

and consumers currently on the network. Using the information returned from the catalogue the 
Event Network Browser is able to contact the individual producers and consumers. 

In order for the Event Network Browser to be able to query the producers and consumers a new 

service has been created within the LinkSmart IoTResouce class library which exposes a 
WebService and REST interface where queries can be made with regards to which events it has 

produced or consumed, see Figure 9 below. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 19 of 61 Submission date: 2016-03-31 

 

LinkSmart IoT Resource

Event Consumer/Producer
(LinkSmart IoT Based)

IoT 
Resource 
Event DB

Event Query 
Interface

 

Figure 9: LinkSmart IoT resource Event Query Interface extension 

All LinkSmart IoT Resource based components will automatically get this added functionality 
requiring no change to the original IoT Resource. It only requires that the developer updates the 

LinkSmart libraries used. Note also that this functionality not only provides the interface but also 

provides the actual storage of events produced or consumed. 

The Event Debugging and Trace Tool provide a simple web based interface for browsing for IoT 

Resources and to look at the events produced or consumed by the resource. The interface for 
browsing and selecting IoT Resources is shown in Figure 10 below. 

 

Figure 10: IoT Resource browser in the Event Debug and Trace Tool 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 20 of 61 Submission date: 2016-03-31 

 

The information shown in the tool contains the resources name, the resource type and a link to 

show the events that have been processed by the resource. Clicking Show Events will display 
basically the same event browsing tool used by the Event Manager Eavesdrop but with the 

exception that one can select to filter on received or sent events, see Figure 11 below. 

 

Figure 11: Event Browser for an individual IoT Resource 

The information displayed is retrieved directly from the IoT Resource itself using the Event Query 
Interface.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 21 of 61 Submission date: 2016-03-31 

 

4. Conclusions 

The final implementation and design of the Iot Event debugging tool has provided the 

infrastructure for eaves dropping the event manager and querying the different event consumers 
and producers for their event information. Adding the support for mqtt protocol and JSON format 

has greatly increased the usefulness of IoT Event Debugging Tool.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 22 of 61 Submission date: 2016-03-31 

 

5. Class Documentation 

 

5.1 EventQuery::EventQuery Class Reference 

Summary description forEventQuery.  

Public Member Functions 

 EventQuery (string IoTID, string name, string vendor, string deviceURN) 

Initializes a new instance of the EventQuery class.  

 override void Start () 

 override void Stop () 

 override System.String CreateWS () 

Creates the WebService.  

 System.String EventQueryService_SearchForEvent (System.DateTime StartTime, 

System.DateTime EndTime, System.Boolean SentEvents, System.Boolean RecievedEvents, 

System.String EventContentQuery) 

Search for event.  

 System.String EventQueryService_SearchForEventWithID (System.String EventID, 

System.Boolean RecievedEvents, System.Boolean SentEvents) 

Search for event with identifier.  

 

Detailed Description 

Summary description forEventQuery.  

 

 

Constructor & Destructor Documentation 

EventQuery::EventQuery::EventQuery (string IoTID,   string name,   string vendor,   string deviceURN) 
[inline] 

Initializes a new instance of the EventQuery class.  

 

Parameters: 

IoTID The ioT id. 

name The device name. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 23 of 61 Submission date: 2016-03-31 

 

vendor The vendor name. 

deviceURN The device URN. 

 

Member Function Documentation 

override void EventQuery::EventQuery::Start () [inline] 

override void EventQuery::EventQuery::Stop () [inline] 

override System.String EventQuery::EventQuery::CreateWS () [inline] 

Creates the WebService.  

 

Returns: 

 

System.String EventQuery::EventQuery::EventQueryService_SearchForEvent (System.DateTime 

StartTime,   System.DateTime EndTime,   System.Boolean SentEvents,   System.Boolean 
RecievedEvents,   System.String EventContentQuery) [inline] 

Search for event.  

 

Parameters: 

StartTime The start time. 

EndTime The end time. 

SentEvents if set to true  [sent events]. 

RecievedEvents if set to true  [recieved events]. 

EventContentQuery The event content query. 

Returns: 

 

System.String EventQuery::EventQuery::EventQueryService_SearchForEventWithID (System.String 
EventID,   System.Boolean RecievedEvents,   System.Boolean SentEvents) [inline] 

Search for event with identifier.  

 

Parameters: 

EventID The event identifier. 

RecievedEvents if set to true  [recieved events]. 

SentEvents if set to true  [sent events]. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 24 of 61 Submission date: 2016-03-31 

 

Returns: 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 25 of 61 Submission date: 2016-03-31 

 

5.2 IoTWCFServiceLibrary::EventQueryServiceWS Class Reference 

Inheritance diagram for IoTWCFServiceLibrary::EventQueryServiceWS: 

 

 

Public Member Functions 

 EventQueryServiceWS (EventQuery.EventQuery theDevice) 

Initializes a new instance of the EventQueryServiceWS class.  

 System.String SearchForEvent (System.DateTime StartTime, System.DateTime EndTime, 

System.Boolean SentEvents, System.Boolean RecievedEvents, System.String EventContentQuery) 

Searches for event.  

 System.String SearchForEventWithID (System.String EventID, System.Boolean 

RecievedEvents, System.Boolean SentEvents) 

Searches for event with identifier.  

Private Attributes 

 EventQuery.EventQuery m_eventquery 

 

Constructor & Destructor Documentation 

IoTWCFServiceLibrary::EventQueryServiceWS::EventQueryServiceWS (EventQuery.EventQuery 
theDevice) [inline] 

Initializes a new instance of the EventQueryServiceWS class.  

 

Parameters: 

theDevice The device. 

 

Member Function Documentation 

System.String IoTWCFServiceLibrary::EventQueryServiceWS::SearchForEvent (System.DateTime 
StartTime,   System.DateTime EndTime,   System.Boolean SentEvents,   System.Boolean 
RecievedEvents,   System.String EventContentQuery) [inline] 

Searches for event.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

Document version: 1.0 Page 26 of 61 Submission date: 2016-03-31 

 

Parameters: 

StartTime The start time. 

EndTime The end time. 

SentEvents if set to true  [sent events]. 

RecievedEvents if set to true  [recieved events]. 

EventContentQuery The event content query. 

Returns: 

 

Implements IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService (p.27). 

System.String IoTWCFServiceLibrary::EventQueryServiceWS::SearchForEventWithID (System.String 
EventID,   System.Boolean RecievedEvents,   System.Boolean SentEvents) [inline] 

Searches for event with identifier.  

 

Parameters: 

EventID The event identifier. 

RecievedEvents if set to true  [recieved events]. 

SentEvents if set to true  [sent events]. 

Returns: 

 

Implements IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService  

 

Member Data Documentation 

EventQuery.EventQuery IoTWCFServiceLibrary::EventQueryServiceWS::m_eventquery [private] 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

27 

5.3 IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService Interface 

Reference 

Inheritance diagram for 

IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService: 

 

 

Public Member Functions 

 System.String SearchForEvent (System.DateTime StartTime, System.DateTime EndTime, 

System.Boolean SentEvents, System.Boolean RecievedEvents, System.String EventContentQuery) 

 System.String SearchForEventWithID (System.String EventID, System.Boolean 

RecievedEvents, System.Boolean SentEvents) 

 

Member Function Documentation 

System.String IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService::SearchForEvent 
(System.DateTime StartTime,   System.DateTime EndTime,   System.Boolean SentEvents,   
System.Boolean RecievedEvents,   System.String EventContentQuery) 

 

Implemented in IoTWCFServiceLibrary::EventQueryServiceWS (p.34). 

System.String 
IoTWCFServiceLibrary::IIoTEventQuery_EventQueryServiceWSService::SearchForEventWithID 
(System.String EventID,   System.Boolean RecievedEvents,   System.Boolean SentEvents) 

 

Implemented in IoTWCFServiceLibrary::EventQueryServiceWS 

 

 

5.4 EventTraceAndDebugTool::DataBaseReader Class Reference 

Manages all interactions with the SQLLite database.  

Public Member Functions 

 void Init () 

 XmlDocument ExecuteQuery () 

Executes the query.  

 XmlDocument GetEvent (string id) 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

28 

Gets the event.  

 void ClearDatabase () 

Clears the database.  

 Int64 GetMinSeqNo () 

Gets the minimum seq no.  

 void CreateDBCopy () 

Creates the database copy.  

Properties 

 DateTime StartDateTime [get, set] 

start interval for retrieval or NULL if no start date time  

 DateTime EndDateTime [get, set] 

end interval for retrieval or NULL if no end date time  

 Int64 SeqNo [get, set] 

SeqNumber where to start to retrieve data.  

 string TopicQuery [get, set] 

Query string for topic.  

 string ContentQuery [get, set] 

QueryString for content.  

Private Member Functions 

 string BuildSQLForSearch () 

Builds the SQL for search.  

 string BuildSQLForCount () 

Builds the SQL for counting instances.  

Private Attributes 

 DbConnection eventDB = null 

Database Connection.  

 DateTime mStartDateTime = DateTime.MinValue 

 DateTime mEndDateTime = DateTime.MaxValue 

 Int64 mSeqNo = Int64.MaxValue 

 string mTopicQuery = "" 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

29 

 string mContentQuery = "" 

 

Detailed Description 

Manages all interactions with the SQLLite database.  

 

 

Member Function Documentation 

void EventTraceAndDebugTool::DataBaseReader::Init () [inline] 

string EventTraceAndDebugTool::DataBaseReader::BuildSQLForSearch () [inline, private] 

Builds the SQL for search.  

 

Returns: 

 

string EventTraceAndDebugTool::DataBaseReader::BuildSQLForCount () [inline, private] 

Builds the SQL for counting instances.  

 

Returns: 

 

XmlDocument EventTraceAndDebugTool::DataBaseReader::ExecuteQuery () [inline] 

Executes the query.  

 

Returns: 

 

XmlDocument EventTraceAndDebugTool::DataBaseReader::GetEvent (string id) [inline] 

Gets the event.  

 

Parameters: 

id The identifier. 

Returns: 

 

void EventTraceAndDebugTool::DataBaseReader::ClearDatabase () [inline] 

Clears the database.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

30 

 

Int64 EventTraceAndDebugTool::DataBaseReader::GetMinSeqNo () [inline] 

Gets the minimum seq no.  

 

Returns: 

 

void EventTraceAndDebugTool::DataBaseReader::CreateDBCopy () [inline] 

Creates the database copy.  

 

 

Member Data Documentation 

DbConnection EventTraceAndDebugTool::DataBaseReader::eventDB = null [private] 

Database Connection.  

 

DateTime EventTraceAndDebugTool::DataBaseReader::mStartDateTime = DateTime.MinValue [private] 

DateTime EventTraceAndDebugTool::DataBaseReader::mEndDateTime = DateTime.MaxValue [private] 

Int64 EventTraceAndDebugTool::DataBaseReader::mSeqNo = Int64.MaxValue [private] 

string EventTraceAndDebugTool::DataBaseReader::mTopicQuery = "" [private] 

string EventTraceAndDebugTool::DataBaseReader::mContentQuery = "" [private] 

 

Property Documentation 

DateTime EventTraceAndDebugTool::DataBaseReader::StartDateTime [get, set] 

start interval for retrieval or NULL if no start date time  

 

DateTime EventTraceAndDebugTool::DataBaseReader::EndDateTime [get, set] 

end interval for retrieval or NULL if no end date time  

 

Int64 EventTraceAndDebugTool::DataBaseReader::SeqNo [get, set] 

SeqNumber where to start to retrieve data.  

 

string EventTraceAndDebugTool::DataBaseReader::TopicQuery [get, set] 

Query string for topic.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

31 

 

string EventTraceAndDebugTool::DataBaseReader::ContentQuery [get, set] 

QueryString for content.  

 

 

5.5 EventDB::EventDB Class Reference 

Manages the storing of events to the database. The events are read from the DBStore queue.  

Public Member Functions 

 EventDB (EventQueue.Queue DBStoreQueue) 

Constructor for event router.  

 void Start () 

Starts the service by spawning a new thread that immediately calls the Recieve function.  

 void RecieveEvents () 

Recieve Events from the queue and route them.  

 void store (Event.EventStructure receivedEvent) 

Store an event in a database.  

Public Attributes 

 bool stop = false 

Flag to stop the thread.  

Private Attributes 

 EventDBServices edbs = new EventDBServices() 

The event Database service.  

 EventQueue.Queue DBStoreQueue = null 

The queue for the events to be stored.  

 Thread workThread = null 

The working thread.  

 

Detailed Description 

Manages the storing of events to the database. The events are read from the DBStore queue.  

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

32 

Constructor & Destructor Documentation 

EventDB::EventDB::EventDB (EventQueue.Queue DBStoreQueue) [inline] 

Constructor for event router.  

 

Parameters: 

DBStoreQueue Queue for the events to be stored 

 

Member Function Documentation 

void EventDB::EventDB::Start () [inline] 

Starts the service by spawning a new thread that immediately calls the Recieve function.  

 

void EventDB::EventDB::RecieveEvents () [inline] 

Recieve Events from the queue and route them.  

Will always run until serviceStopped = True and then sets safelyStopped=True  

void EventDB::EventDB::store (Event.EventStructure receivedEvent) [inline] 

Store an event in a database.  

 

Parameters: 

receivedEvent Received event 

 

Member Data Documentation 

bool EventDB::EventDB::stop = false 

Flag to stop the thread.  

 

EventDBServices EventDB::EventDB::edbs = new EventDBServices() [private] 

The event Database service.  

 

EventQueue.Queue EventDB::EventDB::DBStoreQueue = null [private] 

The queue for the events to be stored.  

 

Thread EventDB::EventDB::workThread = null [private] 

The working thread.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

33 

 

 

void EventDB::EventDBServices::AddParameter (ref DbCommand dbcommand,   string 
paramenterName,   DbType dbType,   object value) [inline, protected] 

Adds a parameter to supplied dbcommand.  

 

Parameters: 

dbcommand DbCommand object that the parameter will be added to 

paramenterName Name of the parameter to be added 

dbType The database datatype of the parameter 

value The actual value 

 

Member Data Documentation 

DbConnection EventDB::EventDBServices::eventDB = null [private] 

Instance of connection to database.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

34 

5.6 EventReceiver::EventReceiver Class Reference 

Inheritance diagram for EventReceiver::EventReceiver: 

 

 

Public Member Functions 

 void Init (EventQueue.Queue RuleQueue, EventQueue.Queue DBQueue, string EPAname, string 

ProjectName) 

Method to instantiate the Event Receiver.  

 void Init (EventQueue.Queue DBQueue, string EPAname, string ProjectName) 

Method to instantiate the Event Receiver.  

 void Stop () 

 void Subscribe (string my_Subscription, int priority) 

Method for adding a subscription to the EventManager.  

Public Attributes 

 string address = "" 

Callback address.  

 string EventListenerHID = "" 

Private Member Functions 

 void SetUpEventManager () 

Setting up the connection to the EventManager.  

 bool EventSubscriber. notify (string topic, eventmanager.linksmart.eu.Part[] parts) 

Receiver of LinkSmart Part based events Converts it to enhanced events with more metadata fields and 

puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 void ParseEventData (string topic, eventmanager.linksmart.eu.Part[] parts) 

 DateTime ConvertDateTime (string timestamp) 

 bool EventSubscriber. notifyEnhancedXmlDocument (string receivedEvent) 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 bool EventSubscriber. notifyEnhanced (Event.EventStructure receivedEvent) 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

35 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 Event.EventStructure InstantiateEvent () 

Instantiates all elements of an enhanced Event.  

Private Attributes 

 Event.EventStructure receivedEvent 

Received and enhanced event.  

 EventQueue.Queue RuleQueue 

Queue for processing by the rule engine.  

 EventQueue.Queue DBQueue 

Queue for storing by the Event DB.  

 NetworkManager20.Registration rid = null 

 NetworkManager.NetworkManagerApplicationService m_networkmanager = null 

 NetworkManager20.NetworkManager m_networkmanager20 = null 

 EventManager.EventManagerImplementation m_eventmanagerlistener = null 

 EventManager.EventManagerImplementation m_eventmanager = null 

Instance of the EventManager.  

 

Member Function Documentation 

void EventReceiver::EventReceiver::Init (EventQueue.Queue RuleQueue,   EventQueue.Queue DBQueue) 
[inline] 

Method to instantiate the Event Receiver.  

 

Parameters: 

RuleQueue Queue for rule engine processing, must be set. 

DBQueue Queue for event DB storage. Can be null if event storage is not used. 

. 

void EventReceiver::EventReceiver::Init (EventQueue.Queue DBQueue) [inline] 

Method to instantiate the Event Receiver.  

 

Parameters: 

DBQueue Queue for event DB storage. Can be null if event storage is not used. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

36 

void EventReceiver::EventReceiver::Stop () [inline] 

void EventReceiver::EventReceiver::SetUpEventManager () [inline, private] 

Setting up the connection to the EventManager.  

 

void EventReceiver::EventReceiver::Subscribe (string my_Subscription,   int priority) [inline] 

Method for adding a subscription to the EventManager.  

 

Parameters: 

my_Subscription Topic/Name of the event to subscribe to 

priority Priority of the event 

bool EventSubscriber. EventReceiver::EventReceiver::notify (string topic,   
eventmanager.linksmart.eu.Part[] parts) [inline, private] 

Receiver of LinkSmart Part based events Converts it to enhanced events with more metadata fields and 

puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 

Parameters: 

topic Topic for the even 

parts Payload of the event 

void EventReceiver::EventReceiver::ParseEventData (string topic,   eventmanager.linksmart.eu.Part[] 
parts) [inline, private] 

DateTime EventReceiver::EventReceiver::ConvertDateTime (string timestamp) [inline, private] 

bool EventSubscriber. EventReceiver::EventReceiver::notifyEnhancedXmlDocument (string 
receivedEvent) [inline, private] 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 

Parameters: 

outgoingEvent Received event 

bool EventSubscriber. EventReceiver::EventReceiver::notifyEnhanced (Event.EventStructure 
receivedEvent) [inline, private] 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 

Parameters: 

outgoingEvent Received event 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

37 

Event.EventStructure EventReceiver::EventReceiver::InstantiateEvent () [inline, private] 

Instantiates all elements of an enhanced Event.  

 

 

Member Data Documentation 

Event.EventStructure EventReceiver::EventReceiver::receivedEvent [private] 

Received and enhanced event.  

 

EventQueue.Queue EventReceiver::EventReceiver::RuleQueue [private] 

Queue for processing by the rule engine.  

 

EventQueue.Queue EventReceiver::EventReceiver::DBQueue [private] 

Queue for storing by the Event DB.  

 

string EventReceiver::EventReceiver::EPAname = "" [private] 

The EPAs name.  

 

string EventReceiver::EventReceiver::ProjectName = "" [private] 

The project name.  

 

string EventReceiver::EventReceiver::address = "" 

Callback address.  

 

string EventReceiver::EventReceiver::EventListenerHID = "" 

NetworkManager20.Registration EventReceiver::EventReceiver::rid = null [private] 

NetworkManager.NetworkManagerApplicationService 
EventReceiver::EventReceiver::m_networkmanager = null [private] 

NetworkManager20.NetworkManager EventReceiver::EventReceiver::m_networkmanager20 = null 
[private] 

EventManager.EventManagerImplementation EventReceiver::EventReceiver::m_eventmanagerlistener 
= null [private] 

EventManager.EventManagerImplementation EventReceiver::EventReceiver::m_eventmanager = null 
[private] 

Instance of the EventManager.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

38 

 

5.7 EventReceiver::EventReceiverService Class Reference 

Inheritance diagram for EventReceiver::EventReceiverService: 

 

 

Public Member Functions 

 void Init () 

Method to instantiate the Event Receiver.  

 void Subscribe (string my_Subscription, int priority) 

Method for adding a subscription to the EventManager.  

Public Attributes 

 string address = "" 

Instance of the Event Router class.  

Private Member Functions 

 void SetUpEventManager () 

Setting up the connection to the EventManager.  

 bool EventSubscriber. notify (string topic, eventmanager.linksmart.eu.Part[] parts) 

Receiver of LinkSmart Part based events.  

 bool EventSubscriber. notifyEnhanced (Event.EventStructure receivedEvent) 

Receiver of enhanced events.  

 bool EventSubscriber. notifyEnhancedXmlDocument (string receivedEvent) 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 Event.EventStructure InstantiateEvent () 

Instantiates all elements of an Event.  

Private Attributes 

 Event.EventStructure receivedEvent 

Received and enhanced event.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

39 

 EventQueue.MSMQ eventQueue = new EventQueue.MSMQ() 

Instance of the Event Database class.  

 EventManager.EventManagerImplementation m_eventmanagerlistener = null 

 EventManager.EventManagerImplementation m_eventmanager = null 

 

Member Function Documentation 

void EventReceiver::EventReceiverService::Init () [inline] 

Method to instantiate the Event Receiver.  

 

void EventReceiver::EventReceiverService::SetUpEventManager () [inline, private] 

Setting up the connection to the EventManager.  

 

void EventReceiver::EventReceiverService::Subscribe (string my_Subscription,   int priority) [inline] 

Method for adding a subscription to the EventManager.  

 

bool EventSubscriber. EventReceiver::EventReceiverService::notify (string topic,   
eventmanager.linksmart.eu.Part[] parts) [inline, private] 

Receiver of LinkSmart Part based events.  

 

bool EventSubscriber. EventReceiver::EventReceiverService::notifyEnhanced (Event.EventStructure 
receivedEvent) [inline, private] 

Receiver of enhanced events.  

 

bool EventSubscriber. EventReceiver::EventReceiverService::notifyEnhancedXmlDocument (string 
receivedEvent) [inline, private] 

Recieves the event and puts it in the rule engine queue and in Event DB queue (if event DB != null).  

 

Parameters: 

outgoingEvent Received event 

Event.EventStructure EventReceiver::EventReceiverService::InstantiateEvent () [inline, private] 

Instantiates all elements of an Event.  

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

40 

Member Data Documentation 

Event.EventStructure EventReceiver::EventReceiverService::receivedEvent [private] 

Received and enhanced event.  

 

EventQueue.MSMQ EventReceiver::EventReceiverService::eventQueue = new EventQueue.MSMQ() 
[private] 

Instance of the Event Database class.  

Instance of the Event Queue class  

string EventReceiver::EventReceiverService::address = "" 

Instance of the Event Router class.  

Callback address  

EventManager.EventManagerImplementation 
EventReceiver::EventReceiverService::m_eventmanagerlistener = null [private] 

EventManager.EventManagerImplementation EventReceiver::EventReceiverService::m_eventmanager = 
null [private] 

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

41 

5.8 EventSubscriberClient Class Reference 

Inheritance diagram for EventSubscriberClient: 

 

 

Public Member Functions 

 EventSubscriberClient () 

 EventSubscriberClient (string endpointConfigurationName) 

 EventSubscriberClient (string endpointConfigurationName, string remoteAddress) 

 EventSubscriberClient (string endpointConfigurationName, 

System.ServiceModel.EndpointAddress remoteAddress) 

 EventSubscriberClient (System.ServiceModel.Channels.Binding binding, 

System.ServiceModel.EndpointAddress remoteAddress) 

 bool notify (string topic, eventmanager.linksmart.eu.Part[] parts) 

Callback for listening to Events.  

 bool notifyEnhanced (Event.EventStructure receivedEvent) 

 bool notifyEnhancedXmlDocument (string eventXml) 

 

Constructor & Destructor Documentation 

EventSubscriberClient::EventSubscriberClient () [inline] 

EventSubscriberClient::EventSubscriberClient (string endpointConfigurationName) [inline] 

EventSubscriberClient::EventSubscriberClient (string endpointConfigurationName,   string 
remoteAddress) [inline] 

EventSubscriberClient::EventSubscriberClient (string endpointConfigurationName,   
System.ServiceModel.EndpointAddress remoteAddress) [inline] 

EventSubscriberClient::EventSubscriberClient (System.ServiceModel.Channels.Binding binding,   
System.ServiceModel.EndpointAddress remoteAddress) [inline] 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

42 

Member Function Documentation 

bool EventSubscriberClient::notify (string topic,   eventmanager.linksmart.eu.Part[] parts) [inline] 

Callback for listening to Events.  

 

Parameters: 

topic The event Topic 

parts List of key value pairs 

Returns: 

true if all is OK, false otherwise 

bool EventSubscriberClient::notifyEnhanced (Event.EventStructure receivedEvent) [inline] 

 

bool EventSubscriberClient::notifyEnhancedXmlDocument (string eventXml) [inline] 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

43 

5.9 EventQueue::MSMQ Class Reference 

Implements a queue using MSMQ.  

Inheritance diagram for EventQueue::MSMQ: 

 

 

Public Member Functions 

 bool Init (string Name) 

Creates the Queue in MSMQ if it does not already exist.  

 bool Queue (string item) 

Adds Item to Queue.  

 string DeQueue () 

Reads Item from Queue.  

 bool QueueEvent (Event.EventStructure eventItem) 

Adds Event to queue.  

 Event.EventStructure DeQueueEvent () 

Reads event from Queue.  

Properties 

 string name [get] 

return the queue name  

Private Member Functions 

 ~MSMQ () 

Destructor that closes the queue if it is open.  

Private Attributes 

 string m_name 

Instance of the Event Database class.  

 string m_MSMQname 

The MSMQ queue name.  

 MessageQueue jobQueue = null 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

44 

The MSMQ queue.  

 object _lock = new object() 

TheLock for sending.  

 

Detailed Description 

Implements a queue using MSMQ.  

MSMQ needs to be installed.  

 

Constructor & Destructor Documentation 

EventQueue::MSMQ::~MSMQ () [inline, private] 

Destructor that closes the queue if it is open.  

 

 

Member Function Documentation 

bool EventQueue::MSMQ::Init (string Name) [inline] 

Creates the Queue in MSMQ if it does not already exist.  

 

Returns: 

True if all went well, False otherwise. 

bool EventQueue::MSMQ::Queue (string item) [inline] 

Adds Item to Queue.  

 

Parameters: 

item Item to be queued 

Returns: 

True if the Item was Queued. False otherwise. 

string EventQueue::MSMQ::DeQueue () [inline] 

Reads Item from Queue.  

 

Returns: 

Item or NULL when failed 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

45 

bool EventQueue::MSMQ::QueueEvent (Event.EventStructure eventItem) [inline] 

Adds Event to queue.  

 

Returns: 

True if event managed to be sent, False otherwise 

Event.EventStructure EventQueue::MSMQ::DeQueueEvent () [inline] 

Reads event from Queue.  

 

Returns: 

The event if successfull, null otherwise. 

 

Member Data Documentation 

string EventQueue::MSMQ::m_name [private] 

Instance of the Event Database class.  

The queue name  

string EventQueue::MSMQ::m_MSMQname [private] 

The MSMQ queue name.  

 

MessageQueue EventQueue::MSMQ::jobQueue = null [private] 

The MSMQ queue.  

 

object EventQueue::MSMQ::_lock = new object() [private] 

TheLock for sending.  

 

 

Property Documentation 

string EventQueue::MSMQ::name [get] 

return the queue name  

Read Only  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

46 

5.10 EventQueue::Queue Interface Reference 

Creates a Queue Interface to be used for communicating within an Event Processing Agent (EPA) NOTE! 

Implementation must be thread safe.  

Inheritance diagram for EventQueue::Queue: 

 

 

Public Member Functions 

 bool Init (string Name) 

Initializes the Queue.  

 bool Queue (string item) 

Adds Item to Queue.  

 string DeQueue () 

Reads Item from Queue.  

 bool QueueEvent (Event.EventStructure eventItem) 

Adds Event to queue.  

 Event.EventStructure DeQueueEvent () 

Reads event from Queue.  

Properties 

 string name [get] 

return the queue name  

 

Detailed Description 

Creates a Queue Interface to be used for communicating within an Event Processing Agent (EPA) NOTE! 

Implementation must be thread safe.  

 

 

Constructor & Destructor Documentation 

bool EventQueue::Queue::Queue (string item) 

Adds Item to Queue.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

47 

 

Parameters: 

item Item to be queued 

Returns: 

True if the Item was Queued. False otherwise. 

Implemented in EventQueue::MSMQ (p.44). 

 

Member Function Documentation 

bool EventQueue::Queue::Init (string Name) 

Initializes the Queue.  

 

Parameters: 

Name Name of Queue 

Returns: 

True if all went OK, otherwise false 

Implemented in EventQueue::MSMQ (p.44). 

string EventQueue::Queue::DeQueue () 

Reads Item from Queue.  

 

Returns: 

Item or NULL when failed 

Implemented in EventQueue::MSMQ (p.44). 

bool EventQueue::Queue::QueueEvent (Event.EventStructure eventItem) 

Adds Event to queue.  

 

Returns: 

True if event managed to be sent, False otherwise 

Implemented in EventQueue::MSMQ (p.45). 

Event.EventStructure EventQueue::Queue::DeQueueEvent () 

Reads event from Queue.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

48 

Returns: 

The event if successfull, null otherwise. 

Implemented in EventQueue::MSMQ (p.45). 

 

Property Documentation 

string EventQueue::Queue::name [get] 

return the queue name  

Read Only  

Implemented in EventQueue::MSMQ (p.45). 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

49 

5.11 EventTraceAndDebugTool::RESTServer Class Reference 

 

Public Member Functions 

 void RunHttpServer () 

Runs the web server forever.  

 void Stop () 

Stops the web server.  

 void WebServer_IncomingRequest (object sender, HttpRequestEventArgs e) 

Callback Event from WebServer when a HTTP request is made.  

 string ProcessRequest (XmlDocument xDoc, HttpListenerRequest request, ref string contentType) 

Processes a JSON webserver request.  

 string formatErrorMessage (string mess) 

Formats an error message in JSON.  

 string parseMethod (HttpListenerRequest request) 

Extracts the method from the request.  

 string FormatFile (string filename, bool isList) 

Formats the JSON result correctly.  

 bool FileHttpCall (string url) 

Determines if it just a filebased call or a REST call.  

 string FileMimeType (string url) 

Determines the MIME type.  

Static Public Member Functions 

 static void WriteLogFile (string logMessage) 

Static method for adding an entry to a log file including a time stamp.  

Static Private Member Functions 

 static int RandomNumber (int min, int max) 

Creates a random number.  

Private Attributes 

 string m_endPoint 

Stores the HTTP callback server address.  



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

50 

 WebServer m_webServer = null 

Stores the mote address.  

 

Member Function Documentation 

void EventTraceAndDebugTool::RESTServer::RunHttpServer () [inline] 

Runs the web server forever.  

 

void EventTraceAndDebugTool::RESTServer::Stop () [inline] 

Stops the web server.  

 

void EventTraceAndDebugTool::RESTServer::WebServer_IncomingRequest (object sender,   
HttpRequestEventArgs e) [inline] 

Callback Event from WebServer when a HTTP request is made.  

 

Parameters: 

sender Sender 

e Arguments 

string EventTraceAndDebugTool::RESTServer::ProcessRequest (XmlDocument xDoc,   
HttpListenerRequest request,   ref string contentType) [inline] 

Processes a JSON webserver request.  

 

Parameters: 

xDoc The POST part of JSON converted to XML 

request The complete request object 

Returns: 

The result of the request as a string 

string EventTraceAndDebugTool::RESTServer::formatErrorMessage (string mess) [inline] 

Formats an error message in JSON.  

 

Parameters: 

mess The error message 

Returns: 

The error message in JSON format. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

51 

string EventTraceAndDebugTool::RESTServer::parseMethod (HttpListenerRequest request) [inline] 

Extracts the method from the request.  

 

Parameters: 

request The request object 

Returns: 

The method as string 

string EventTraceAndDebugTool::RESTServer::FormatFile (string filename,   bool isList) [inline] 

Formats the JSON result correctly.  

NOT USED any longer  

Parameters: 

filename The name of the XML file to be loaded and converted to JSON 

isList True if it is a JSON list 

Returns: 

The formatted result 

static void EventTraceAndDebugTool::RESTServer::WriteLogFile (string logMessage) [inline, static] 

Static method for adding an entry to a log file including a time stamp.  

 

Parameters: 

logMessage The message to be added to the logfile 

bool EventTraceAndDebugTool::RESTServer::FileHttpCall (string url) [inline] 

Determines if it just a filebased call or a REST call.  

 

Parameters: 

url The call url 

Returns: 

True if its a file call, false otherwise 

string EventTraceAndDebugTool::RESTServer::FileMimeType (string url) [inline] 

Determines the MIME type.  

 

Parameters: 

url The call url 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

52 

Returns: 

The MIME  

static int EventTraceAndDebugTool::RESTServer::RandomNumber (int min,   int max) [inline, static, 
private] 

Creates a random number.  

 

Parameters: 

min The minimum. 

max The maximum. 

Returns: 

A random number 

 

Member Data Documentation 

string EventTraceAndDebugTool::RESTServer::m_endPoint [private] 

Stores the HTTP callback server address.  

 

WebServer EventTraceAndDebugTool::RESTServer::m_webServer = null [private] 

Stores the mote address.  

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

53 

 

5.12 IoT::EventPayloadParser Class Reference (New) 

Provides functionality to parse payloads to extract information which is then repackaged to match the evnt 

structure in the database. 

Public Member Functions 

 EventPayloadParser (EventQueue.Queue IncomingQueue, EventQueue.Queue OutgoingQueue) 

Constructor for event parser.  

 void Start () 

Starts the service by spawning a new thread that immediately calls the Recieve function.  

 void RecieveEvents () 

Recieve Events from the queue and route them.  

 void Proccess (Event.EventStructure receivedEvent) 

Parses the event and process it.  

Private Attributes 

 string pathToExtractDefinitions = "" 

The path to the extract definitions.  

 EventQueue.Queue IncomingQueue = null 

 EventQueue.Queue OutgoingQueue = null 

 Thread workThread = null 

The working thread.  

 

Detailed Description 

Provides functionality to parse payloads to extract information.  

 

 

Constructor & Destructor Documentation 

IoT::EventPayloadParser::EventPayloadParser (EventQueue.Queue IncomingQueue,   
EventQueue.Queue OutgoingQueue) [inline] 

Constructor for event parser.  

 

Parameters: 

IncomingQueue The incoming queue. 

OutgoingQueue The outgoing queue. 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

54 

Member Function Documentation 

void IoT::EventPayloadParser::Start () [inline] 

Starts the service by spawning a new thread that immediately calls the Recieve function.  

 

void IoT::EventPayloadParser::RecieveEvents () [inline] 

Recieve Events from the queue and route them.  

Will always run until serviceStopped = True and then sets safelyStopped=True  

void IoT::EventPayloadParser::Proccess (Event.EventStructure receivedEvent) [inline] 

Parses the event and process it.  

 

Parameters: 

receivedEvent Received event 

 

Member Data Documentation 

string IoT::EventPayloadParser::pathToExtractDefinitions = "" [private] 

The path to the extract definitions.  

 

EventQueue.Queue IoT::EventPayloadParser::IncomingQueue = null [private] 

The queue for the events to be ¨processedW"  

EventQueue.Queue IoT::EventPayloadParser::OutgoingQueue = null [private] 

The queue for the events that have been processed  

Thread IoT::EventPayloadParser::workThread = null [private] 

The working thread.  

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

55 

5.13 IoT::Mqtt::MqttEventArgs Class Reference (New) 

Mqtt Event Container.  

Public Member Functions 

 MqttEventArgs (string topic, string payload, byte QoSLevel, bool dupFlag, bool retain) 

Public Attributes 

 string topic 

 string payload 

 byte QoSLevel 

 bool dupFlag 

 bool retain 

 

Detailed Description 

Mqtt Event Container.  

 

 

Constructor & Destructor Documentation 

IoT::Mqtt::MqttEventArgs::MqttEventArgs (string topic,   string payload,   byte QoSLevel,   bool dupFlag,   
bool retain) [inline] 

 

Member Data Documentation 

string IoT::Mqtt::MqttEventArgs::topic 

string IoT::Mqtt::MqttEventArgs::payload 

byte IoT::Mqtt::MqttEventArgs::QoSLevel 

bool IoT::Mqtt::MqttEventArgs::dupFlag 

bool IoT::Mqtt::MqttEventArgs::retain 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

56 

5.14 IoT::MqttEventReciever Class Reference (New) 

Receives events from Mqtt.  

Public Member Functions 

 void Init (EventQueue.Queue OutQueue, string brokerAddress, string[] subscriptions) 

Method to instantiate the Mqtt Event Receiver.  

 void Stop () 

Stops this instance.  

 void Subscribe (string my_Subscription, int priority) 

Method for adding a subscription to the Mqtt broker.  

 void MqttEventReceivedHandler (object sender, IoT.Mqtt.MqttEventArgs e) 

MQTT event received handler.  

Private Attributes 

 IoT.Mqtt.MqttEventArgs receivedEvent 

Received event.  

 EventQueue.Queue OutQueue 

Queue for further processing.  

 string brokerAddress 

The broker address.  

 string[] subscriptions = null 

The subscriptions.  

 

Detailed Description 

Receives events from Mqtt.  

 

 

Member Function Documentation 

void IoT::MqttEventReciever::Init (EventQueue.Queue OutQueue,   string brokerAddress,   string[] 
subscriptions) [inline] 

Method to instantiate the Mqtt Event Receiver.  

 

Parameters: 

OutQueue The out queue. 

brokerAddress The broker address. 

subscriptions The subscriptions. 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 
 

 

 

57 

void IoT::MqttEventReciever::Stop () [inline] 

Stops this instance.  

 

void IoT::MqttEventReciever::Subscribe (string my_Subscription,   int priority) [inline] 

Method for adding a subscription to the Mqtt broker.  

 

Parameters: 

my_Subscription Topic/Name of the event to subscribe to 

priority Priority of the event 

void IoT::MqttEventReciever::MqttEventReceivedHandler (object sender,   IoT.Mqtt.MqttEventArgs e) 
[inline] 

MQTT event received handler.  

 

Parameters: 

sender The sender. 

e The IoT.Mqtt.MqttEventArgs instance containing the event data. 

 

Member Data Documentation 

IoT.Mqtt.MqttEventArgs IoT::MqttEventReciever::receivedEvent [private] 

Received event.  

 

EventQueue.Queue IoT::MqttEventReciever::OutQueue [private] 

Queue for further processing.  

 

string IoT::MqttEventReciever::brokerAddress [private] 

The broker address.  

 

string [] IoT::MqttEventReciever::subscriptions = null [private] 

The subscriptions.  

 

 



Document version: 1.0  Submission date: 2016-03-31 

5.15 IoT::Mqtt::MqttListener Class Reference(New) 

Listener class for MQTT.  

Public Member Functions 

 MqttListener (string brokerAddress) 

Initializes a new instance of the MqttListener class.  

 MqttListener (string brokerAddress, string clientId) 

Initializes a new instance of the MqttListener class.  

 bool Connect () 

Connects this instance.  

 bool Subscribe (string topic, byte QoS) 

Subscribes the specified topic.  

 bool UnSubscribe (string topic) 

Uns the subscribe.  

 bool Disconnect () 

Disconnects this instance.  

Public Attributes 

 event MqttEventReceivedHandler eventReceived 

Occurs when event received.  

Private Member Functions 

 void client_MqttMsgPublishReceived (object sender, 

uPLibrary.Networking.M2Mqtt.Messages.MqttMsgPublishEventArgs e) 

Handles the MqttMsgPublishReceived event of the client control.  

Private Attributes 

 MqttClient client = null 

The mqtt client.  

 List< String > subscriptionTopics = new List<String>() 

The subscription topics.  

 List< byte > subscriptionQoS = new List<byte>() 

The subscription qo s.  

 string brokerAddress = "127.0.0.1" 

The broker address.  

 bool connected = false 

The connected state.  

 string clientId = Guid.NewGuid().ToString() 

The client identifier.  

 

Detailed Description 

Listener class for MQTT.  

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 

 

 

Document version: 1.0 Page 59 of 61 Submission date: 2016-03-31 

Constructor & Destructor Documentation 

IoT::Mqtt::MqttListener::MqttListener (string brokerAddress) [inline] 

Initializes a new instance of the MqttListener class.  

 

Parameters: 

brokerAddress The broker address. 

IoT::Mqtt::MqttListener::MqttListener (string brokerAddress,   string clientId) [inline] 

Initializes a new instance of the MqttListener class.  

 

Parameters: 

brokerAddress The broker address. 

clientId The client identifier. 

 

Member Function Documentation 

bool IoT::Mqtt::MqttListener::Connect () [inline] 

Connects this instance.  

 

Returns: 

 

void IoT::Mqtt::MqttListener::client_MqttMsgPublishReceived (object sender,   
uPLibrary.Networking.M2Mqtt.Messages.MqttMsgPublishEventArgs e) [inline, private] 

Handles the MqttMsgPublishReceived event of the client control.  

 

Parameters: 

sender The source of the event. 

e The uPLibrary.Networking.M2Mqtt.Messages.MqttMsgPublishEventArgs instance containing the event 

data. 

bool IoT::Mqtt::MqttListener::Subscribe (string topic,   byte QoS) [inline] 

Subscribes the specified topic.  

 

Parameters: 

topic The topic. 

QoS The qos. 

Returns: 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 

 

 

Document version: 1.0 Page 60 of 61 Submission date: 2016-03-31 

bool IoT::Mqtt::MqttListener::UnSubscribe (string topic) [inline] 

Uns the subscribe.  

 

Parameters: 

topic The topic. 

Returns: 

 

bool IoT::Mqtt::MqttListener::Disconnect () [inline] 

Disconnects this instance.  

 

Returns: 

 

 

Member Data Documentation 

event MqttEventReceivedHandler IoT::Mqtt::MqttListener::eventReceived 

Occurs when event received.  

 

MqttClient IoT::Mqtt::MqttListener::client = null [private] 

The mqtt client.  

 

List<String> IoT::Mqtt::MqttListener::subscriptionTopics = new List<String>() [private] 

The subscription topics.  

 

List<byte> IoT::Mqtt::MqttListener::subscriptionQoS = new List<byte>() [private] 

The subscription qo s.  

 

string IoT::Mqtt::MqttListener::brokerAddress = "127.0.0.1" [private] 

The broker address.  

 

bool IoT::Mqtt::MqttListener::connected = false [private] 

The connected state.  

 

string IoT::Mqtt::MqttListener::clientId = Guid.NewGuid().ToString() [private] 

The client identifier.  

 

 



IMPReSS D7.4.2 Final Design and implementation of the IoT Event Debugging Tool 

 

 

Document version: 1.0 Page 61 of 61 Submission date: 2016-03-31 

6. References 

(MQTT, 2016)   http://mqtt.org/ , visited 2016-02-15. 

 (LINKSMART, 2014)  http://www.hydramiddleware.eu/news.php, visited 2014-07-15. 

 (LINKSMART2,2014) http://sourceforge.net/projects/linksmart/, visited 2014-07-15. 

 (LINKSMART3,2014) D12.9_Final External Developers Workshops Teaching Materials.pdf 

                               ,visited 2014-07-15. 

 

 

http://mqtt.org/
http://www.hydramiddleware.eu/news.php
http://sourceforge.net/projects/linksmart
http://www.hydramiddleware.eu/hydra_documents/D12.9_Final%20External%20Developers%20Workshops%20Teaching%20Materials.pdf

