
Document version: 1.0 Submission date:

Target Outcome: b) Sustainable technologies for a Smarter Society

(FP7 614100)

D7.3.2 Final Design and Implementation of the Configuration
and Composition Manager

Date 07 January 2016 – Version 1.0

Published by the Impress Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 2 of 16 Submission date: 31st December 2015

Document control page

Document file: D7.3.2 Final Design and Implementation of the Configuration and

Composition Manager_v02.docx

Document version: 1.0

Document owner: Enrico Ferrera (ISMB)

Work package: WP7 – IDE Framework for Model-driven development

Task: T7.3 Unified configuration management API

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Enrico Ferrera 2015/12/01 Initial structure of the document.

Contributions in all sections.

0.2 Davide Conzon 2015/12/15 Contribution on Configuration and

Composition Framework Architecture

chapter

0.3 Enrico Ferrera 2015/12/24 Document finalization

Internal review history:

Reviewed by Date Summary of comments

Lucas Lira Gomes 2015/12/29 Accepted with minor revisions

Marc Jentsch 2016/01/07 Accepted with minor revisions

Peeter Kool 2016/01/07 Accepted with minor revisions

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 3 of 16 Submission date: 31st December 2015

Index:

1 Executive summary ... 4

2 Introduction .. 5

3 Background ... 6

3.1 SNMP ... 6
3.2 XMPP ... 6

4 Configuration and Composition Framework Architecture......................... 8

4.1 Architecture description .. 8
4.2 Configuration and Composition Framework Components 9

4.2.1 Composition operations ... 10
4.2.2 Configuration operations .. 11

4.3 Composition and Configuration Manager Ad-Hoc commands....................... 12
4.4 Configuration and Composition GUI .. 12

5 Summary & Conclusion .. 15

6 Bibliography .. 16

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 4 of 16 Submission date: 31st December 2015

1 Executive summary

This document describes the final architecture of the Configuration and Composition Framework
(CCF). Furthermore, APIs for interaction with CCF are described.

The deliverable is organized as follow: section 2 introduce briefly the contents of the deliverable,

section 3 describes two protocols related with the CCF: the Simple Network Management Protocol
(SNMP) [1], which has inspired the architecture of the CCF and the eXtensible Messaging and

Presence Protocol (XMPP1), which has been used to implement the framework. Section 4 presents
the final architecture, specifying how the components of the framework have been designed and

implemented. Finally, in Section 5, the operations exposed by the framework using XMPP are
described.

This deliverable presents the final architecture and the implementation details of the CCF, for the

description of the role of the CCF in the IMPReSS architecture and its basic concepts, please refer to
the Deliverable D7.3.1 Initial Design and Implementation of the Configuration and Composition
Manager.

1 http://xmpp.org

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 5 of 16 Submission date: 31st December 2015

2 Introduction

The CCF is the part of the IMPReSS SDP in charge of the configuration and composition of the different

components of the platform in order to initialize them and establish how they have to work together so

as to set the correct workflow of the platform.

The framework is composed basically by three different components:

 The Configuration and Composition Manager (CC_M), which is the central component, in charge

to compose and configure the different components of the platform, exposing the IMPReSS
APIs for this purpose.

 The Configuration and Composition Agents (CC_A), which are the distributed entities of the

architecture, located on the components that monitor the associated component and interact

with the Manager.

 The Composition GUI, which is the interface provided to the System Managers to interact with

the Configuration and Composition Manager, using the API that it exports.

The architecture of the framework has been inspired by the one of the Simple Network Management
Protocol (SNMP), the standard-de-facto for network management in IP networks. The solution

presented in this deliverable addresses some of the issues of the SNMP protocol when used in the IoT
scenario (security issues, request to implement a specific protocol only for network management),

leveraging the XMPP, which is an open standard already used in IoT applications that can be used also

for these purposes.

The following of the document provides an overview of the final design and implementation of the

Configuration and Composition Framework.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 6 of 16 Submission date: 31st December 2015

3 Background

This section introduces SNMP and XMPP, two standards that has been used in different ways in the

design of the CCF architecture. Before, the section introduces SNMP, presenting its architecture and

explaining how it has influenced the one of the CCF; then it explains why, for the actual
implementation of the CFF, the XMPP protocol has been used.

3.1 SNMP

SNMP is an Internet-standard protocol, standardized by the IETF, for managing devices on IP
networks. This protocol is used to monitor the status of devices connected to a network. An SNMP

managed network consists of three basic components: a set of managed devices, a set of Agents
(one for each managed device), and a Network Management Station (NMS). The protocol is based

on a distributed architecture: in the NMS, there are the Managers, which are the components

responsible to monitor the devices. Each monitored system is controlled by an agent, which exposes
the management data as variables that can be queried and written, in order to configure the device.

Besides allowing the management of the variables, the SNMP protocol implements also, a
notification system called trap, which allows the agents to notify the SNMP managers, when an

important event happens on the device, like a malfunction.

Designing the architecture of CCF, the one of SNMP has been used as reference. Particularly, CCF
uses the same structure with a central component for the management, which communicates with a

set of agents, distributed on the managed entities. Furthermore, also the possibility for the agents to
generate asynchronous notification to the manager has been replicated also in the CCF architecture.

The next paragraph explains the motivations, which has led to implement this architecture
leveraging the XMPP protocol.

3.2 XMPP

SNMP is a standard de-facto protocol for management of devices in the IP based networks. In IoT
the problems to address are similar, but the challenge is to manage typical components of an IoT

network, i.e. IoT gateways, sensors and actuators. MQTT [2], RESTFul protocols like CoAP [3], HTTP

[4] and XMPP are protocols already used in IoT application deployment and therefore were
considered conceivable to use them also for the composition and configuration purposes. The object

identification approach used in SNMP is quite hard to deal with, furthermore, much of the system is
insecure, and the SNMP traps are not simple to manage. For these reasons, the CCF has been

designed to use the same architecture of SNMP, but leveraging the XMPP protocol and its features.

XMPP – an IETF standard also known as Jabber – is a protocol based on XML for the real-time
messaging, for the exchange of presence information and for request-response services. XMPP

supports a wide range of applications: instant messaging, presence notification, multi-party chat,
audio-video call and, most generally, XML routing. XMPP is an open protocol and, thus, is free and

open-source: over the long period, an open standard provides stronger security, greater

extensibility, and is more open to improvement than proprietary technologies. XMPP is, after more
than 10 years of development, proven and mature; it has been tested in scenario with thousands of

Jabber servers on internet and millions users (e.g. it has been at the basis of Google Talk) and a
large number of applications have been developed using the instant-messaging functionalities, in

very different application fields. XMPP is fully decentralized: everyone can use its XMPP server and
manages independently its network. XMPP is extensible: using the potential of the XML, everyone

can add features to the core functions. It offers interoperability features, such as HTTP binding,

service discovery, file transfer, server federation. Finally, XMPP natively provides security features,
such as Simple Authentication and Security Layer (SASL) [5] and Transport Layer Security (TLS) [6],

both for client-to-server and server-to-server communications.

Keeping the same architecture of SNMP, but leveraging on an XMPP server, can be sent out jabber

notifications, kicked off restart jobs and, managed seamlessly device availability and changing

status, updated web pages, etc. The XML data are small in this case, and one XMPP server can be
used both to talk to humans in message stanzas, or to computers, using the same protocol. This is

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 7 of 16 Submission date: 31st December 2015

particularly important useful to save resources in resource-constrained devices, avoiding requiring
the support for additional protocols like SNMP or CMIP. IoT-PIC leverages many features provided by

the protocol: every device is univocally identified through a Jabber Identifier (JID); and the presence

mechanism is used to know in real-time the status of the devices. Furthermore, also XMPP
Extensions (XEPs)2 are used. The XEP-0030 (Service Discovery)3, used to discover what entities are

on the network and, exactly, which XMPP features those entities implement. The XEP-0050 (Ad-Hoc
Command)4, which provides workflow capabilities for any structured interaction between two XMPP

entities. The XEP-0060 (Publish-Subscribe)5 that allows to subscribe to an information node and then
to receive a notification, only when an entity publishes an item to that node, providing a scalable

and real-time alternative to constant and expensive polling for updates. Finally, also the XEP-0248

(PubSub Collection Nodes)6 is used to organize the publish-subscribe nodes leveraged in the
discovery mechanism in a hierarchical structure. Indeed, this XEP explains how to create nodes,

which can contains one or more other nodes (both leaf nodes and other collection nodes); the
subscription to one of these nodes allows receiving the notifications of all the events sent to the

publish-subscribe nodes that it contains, therefore implementing an actual network management.

2 http://xmpp.org/xmpp-protocols/xmpp-extensions/
3 http://xmpp.org/extensions/xep-0030.html
4 http://xmpp.org/extensions/xep-0050.html
5 http://xmpp.org/extensions/xep-0060.html
6 http://xmpp.org/extensions/xep-0248.html

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 8 of 16 Submission date: 31st December 2015

4 Configuration and Composition Framework Architecture

The deliverable D7.3.1 Initial Design and Implementation of the Configuration and Composition

Manager has introduced the context of the CCF and the initial design of its architecture. This section

describes the final architecture and the implementation details of the framework’s components.

4.1 Architecture description

Figure 1 shows the IMPReSS platform architecture from a functional point of view. Besides the ones

already listed (CC_M, CC_A and Composition GUI) the components of the platforms, related with the
CCF are the Resource Adaption Interface (RAI) and the Resource Catalogue (please, refer to D3.1

Resource Adaption Interface Framework for details about RAI and to D3.2 Resource and Service
Discovery Solutions for details about Resource Catalogue). These components collaborate to achieve

two main goals: the first one is to allow interconnecting the modules of an instance of the IMPReSS

platform, in order to connect them and to realize desired applications and services. The second one is
to allow the configuration of the platform and its components, furthermore, enabling to monitor their

status in real-time.

Figure 1 - IMPReSS SDP

The stakeholders execute the commissioning tasks using the Composition GUI, which relies on the CCM.
The RAI, instead, is responsible of the virtualization of the devices connected to the network. The

stakeholders mostly involved with these tasks are the Developers and the Managers. The developers
use these tools to combine different modules and compose the specific logic flow suitable for their

applications. In this way, actually, they implement the final “IMPReSS-enabled” application, leveraging

the SDP. Instead, the system Managers set the parameters of the platform modules to make the
system effective. They install, configure, deploy the applications, and connect them to other external

services and hardware components. Managers must have a specific interface (GUIs actually, in different
flavors, such as Web-based and smartphone/tablet apps), so that they are easily able to operate on the

system under different circumstances into different environments. To fit both needs (Developers’ and

Managers’ ones), the CC_M allows dealing with the main aspects of commissioning and platform
configuration:

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 9 of 16 Submission date: 31st December 2015

IoT Platform sub-components composition: i.e. interconnect different available components of the
platform (e.g. service proxies, data filtering and aggregation modules, decision support systems, etc.).

In other word, the composition aims to realize the application, defining, for each relevant platform

component available, from which other components it has to take the inputs and to give its outputs.
This stage defines the workflow of the application. This feature is used by the platform Developers for

defining connections among different sub-components in order to implement specific application logic.
In fact, through the composition is possible to realize the actual application to be executed. For

instance, in order to make a building management application, the developer can use the GUI in order
to graphically connect the outputs of the logic blocks representing physical temperature sensors with

the inputs of a module calculating mean values of incoming data series. The output of this last module

can be connected with the input of another module that checks if incoming values are above or below a
specific threshold. The output of this last module can be used as input for the software module that

drives a bell for announcing a critical situation. CC_M has the role of concretely implement the logical
connection sketched on the GUI.

IoT Platform sub-components Configuration: this stage provides to each platform component involved

in the realization of the application (i.e. the ones interconnected through the composition stage) the
values for the correct behavior of the applications. For instance, suppose we have interconnected,

through the composition stage, the output of a temperature sensor to a module that raises an alert
whenever the temperature exceeds a threshold. In this case, the configuration stage is responsible for

set parameters, such as the sensing rate of the sensor temperature and the threshold temperature at
which the second module has to raise the alert. The CC_M provides to the platform Manager all the

available services and entities, allowing to configure the parameters of the components of the overall

IoT platform.

IoT Platform sub-components Discovery: it allows detecting automatically devices joining the IoT

platform and the services they provide. A common language has to be used to describe the services, in
order to allow their usage without the need of users’ intervention.

The Composition GUI is a model-driven development toolkit that allows inexperienced developers to

discover and compose distributed devices and services into mashups. The proposed modelling tool
allows operators to model the integration of IoT components visually and programmatically,

transforming the model into actual source code, executable as a standalone application, with software
interfaces selectable during prototype modelling. This interface has been designed to allow users to

configure, compose and manage entities to provide different services for the Internet-of-Things by a

single access point. Through its interface, users are able to compose the IoT platform, installing and
configuring, among those available only the services required for their own purposes.

4.2 Configuration and Composition Framework Components

The role of the CCF is to provide a unique and general way of performing the commissioning of the
platform. The architecture of the CCF is shown in Figure 2. This architecture, as already said, is inspired

by the SNMP one (described in the previous section) and aims at performing the configuration and

composition of hardware and software resources. The architecture of CCF consists of two levels, the
global and local one, and is mainly composed by two components:

 A Configuration and Composition Manager (CC_M) at a global level.

 A Configuration and Composition Agent (CC_A) at local level.

The communication among the components leverages the XMPP protocol.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 10 of 16 Submission date: 31st December 2015

Figure 2 - Configuration and Composition Framework architecture

The CC_M is the module in charge of managing the configuration and composition processes of the

other modules into the platform; it works as an interface between the applications and the various
components of the platform. The functionalities of CC_M consist in the following:

 Notifies the applications on the status of the components available in the middleware.

 Retrieves the configuration from the CC_A, when required through a XMPP ad-hoc command.

 Updates the configuration of the components through the CC_A via XMPP.

CC_M is responsible for the management of the composition stage. In order to do this, the CCF
leverages on the publish-subscribe paradigm, which allows the complete decoupling of the various

components. Specifically, when the output of a component is connected to the output of another

component, it means that the last one will subscribe itself to the publish-subscribe node, where the first
one publishes its data.

A CC_A is associated with each component of the platform. It exposes “get” and “set” ad-hoc
commands, to manage configuration parameters of a specific component to the CC_M. The CC_A

operates actually the configuration commands coordinated by CC_M. The association of an agent to
each module makes the system more expandable and scalable from the point of view of configuration

issues. CC_A is responsible for:

 Register the component in the CC_M.

 Handling the configuration parameters of the component.

 Handling the interconnection of the components with each other, adding and removing input

Configuration and Composition Framework API

In this chapter are reported the operations that can be managed by the REST API exposed by the

CCM and CCA.

4.2.1 Composition operations

To allow the composition of the applications, the CCF implements a set of features for the service

discovery, implemented through the XMPP protocol. These features allow, on one hand, to register
automatically the new devices connected to the network, describing them and their functionalities,

with a common format; and, on the other hand, to allow their discovering. Particularly, in the
proposed solution, every resource discovered, is associated with an account on the local XMPP server.

When a new resource is connected to the network, the manager of that network calls an ad-hoc
command on CC_M, This command creates one or more publish-subscribe nodes, representing the

resource and its features. Following a concept similar to the one defined by the OSGi Device

Abstraction Layer standard specification7, the devices are described through the functions they

7 https://github.com/osgi/design/raw/master/rfcs/rfc0196/rfc-0196-

DeviceAbstractionLayer.pdf

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 11 of 16 Submission date: 31st December 2015

provide and the operations possible on them. Specifically, the CC_M creates a collection node with the
name of the id of the resource and, then, inserts in this collection node one leaf node for each

function provided by the resource. For example, if the resource is a sensor that measures humidity

and temperature, the CC_M creates a collection node with the id of the device, containing two nodes,
one for the function temperature and one for the function humidity. Using the features defined in the

XEP-00308, the CC_M associates to each node the information useful for the service discovery. The
resource nodes have associated the list of resource types (for the sensor taken as example, the list

will contain Humidity Sensor and Temperature Sensor). Instead, the function nodes have associated
the list of operations possible for that function (i.e. getTemprature for the temperature function and

getHumdidity for the humidity one). This is the lowest part of the hierarchy; the Context Manager can

create nodes related to the location where the nodes of the devices can be inserted to set their
location. Finally, all the nodes have to be inserted in one source node, in order to allow browsing the

tree starting from the root. Besides the nodes, the CC_M publishes also a set of ad-hoc commands
callable on the resource: this set of commands maps the list of operations registered in the Service

Discovery nodes. Accordingly, when a user discovers the operations on a resource, he/she knows that

he/she can use that name to call a command on the resource. In this way, using the service discovery
provided by XMPP, it will be possible to search for a resource node on the server and, through its

name, it will be possible to retrieve the commands that it exports. Particularly, the CCF provides and
ad-hoc command, which allows discovering the resources; if the user does not indicate parameters,

the entire hierarchy of nodes is returned. Otherwise, if the user needs to limit the discovery, it can use
this format:

{“nodes”: [], “types”: [], “devices”: [], “functions”: [], “operations”: [] }

Where, the different fields are used in this way:

 “nodes”: if a list of nodes is indicated in this part, the result indicates only the nodes

contained in these ones.

 “types”: if a list of types is indicated in this part, the result indicates only the devices of these

types.

 “devices”: if a list of devices is indicated in this part, the result indicates only functions and

operations of these devices.

 “functions” : if a list of functions is indicated in this part, the result indicates only devices that

support these functions.

 “operations”: if a list of operations is indicated in this part, the result indicates only devices

that provide these operations.

The CC_M will maintain the tree synchronized with the presence of the resources, when a resource

disappears, the manager associated to its network calls an ad-hoc command on the CC_M, which
deletes the collection node of the device and its children.

4.2.2 Configuration operations

For the configuration part, specifically, every CC_A exposes two ad-hoc commands: the first

command provides a list of all the management data, into a XML structure, which associates to

every variable: the type, the current value and a list of possible values to assign (if range is limited).
The second command allows updating the values associated to one or more of these variables (if

they are writable); to write the values, the ad-hoc command has to be called, passing to it the XML
used in the reading command with new values. The application, which has to configure the various

components, interacts with the CC_M that provides two ad-hoc commands to read and write the

configurations on the various CC_A.

8 http://xmpp.org/extensions/xep-0030.html

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 12 of 16 Submission date: 31st December 2015

4.3 Composition and Configuration Manager Ad-Hoc commands

4.4 Configuration and Composition GUI

Configuration and Composition GUI is composed by two parts, the first one allows the system
integrators to manage and monitor an instance of the IMPReSS platform, the other one allows

composing the module of an instance.

The configuration interface (Figure 3) allows a number of features that simplify commissioning and
management of the implemented IoT platform. The features include:

 Connection management, for the XMPP features.

 Management of system bundles (RAI, Managers of the IMPReSS SDP).

 Download of desired system bundles.

 Installation and removal of system bundles.

 Start and stop of system bundles.

 Management of system bundles updates.

Name Parameters Returns Description

getAvailableDrivers - The list of the

drivers available
on the repository

Returns the list of the drivers

available on the repository and not
already installed in the RAI.

getConfiguration
Component identification

name

The parameters
that can be

configured in the
component.

This operation is used to get the list
of the parameters that can be

configured in the component (with
the current values).

setConfiguration Component identification

name

ConfigurationForm

 Updates the configuration of the

component, setting the values
passed as parameter.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 13 of 16 Submission date: 31st December 2015

Figure 3 - Composition GUI

An installation wizard procedure has been designed to guide the user into the different configuration

tasks. Once launched, the Composition GUI reads its Platform Configuration File loading the values,
including the web link to download an xml file containing the updated list of the available system

bundles. Using these data, users can fill a form and save their personal settings, related to XMPP
server configurations, as Internet Protocol (IP) address, hostname, listening port and pub/sub node.

After saving above information, the IOT-PIC GUI tries to connect to the local XMPP server. If the

connection fails, the Composition GUI displays an error message and let user to try to establish the
connection again. Once the connection is established, users can access all the functionalities of the

interface. This interface is dynamically built using the list of available bundles downloaded from the
web link. The GUI provides, for each bundle, the following operations:

 Download/remove: when the user clicks the download button, the CC_M download the

bundle from the remote repository and install it in the middleware instance. Once the bundle
is installed, if no more needed, it can be removed.

 Update: when a new version of an installed bundle is available on the repository, the GUI

alerts the user. Once the Update button is clicked, the software automatically uninstalls the

previous module and replaces it with the new one.

 Start/stop: this operation allows starting and stopping the execution of the bundles installed.

The interface provides also a visual indication of the status of the bundles, in order to inform in real-

time the user if the bundle is correctly running, or if there is some error in its execution.

Besides the page for managing the system bundles, the Composition GUI provides also an

administrative page used by system Managers to install and configure the RAI Device Managers. The

two views represent different levels of management, for this reason, the first page is only accessible
for the system administrator, while this latter one is accessible to all the users of the platform. For

this page, the web interface uses the CC_M to retrieve the list of Device Managers available on the
repository, and using this list, it dynamically creates the web page, shown in Figure 3. Through this

web page, it is possible to interact with the CC_M, in order to indicate the Device Managers to install
(or remove) in the RAI. Furthermore, the interface can be used to configure one Device Manager:

when the user clicks the configure button, the GUI queries the CC_M, to retrieve the configuration

parameters for the corresponding bundle (e.g. data related to sensors, addresses, communication
protocol, thresholds, or sampling rate). The GUI uses this information to build a form, which has to

be filled by the user to indicate the value to set for each parameter. Once saved the values set are
set in the bundle, through the CC_M.

As said before, the IMPReSS toolkit is completed by a model driven development (MDD) tool for IoT

applications. This tool uses the features provided by the CCF, to manage the components and to
create the interactions among them, to implement applications, based on the IMPReSS platform.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 14 of 16 Submission date: 31st December 2015

The tool provides a list of the components available in the platform; this list is maintained updated in
real-time, through the CCF. Furthermore, when the application is created using the MDD tool, the

configuration generated contains information useful to connect components among each other, as

indicated by the links created in the application model.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 15 of 16 Submission date: 31st December 2015

5 Summary & Conclusion

In this deliverable, the final Composition and Configuration Framework (CCF) architecture and

features have been outlined. It manages the provisioning of the platform performing two different

stages: the composition of the application and its configuration.

This document presented the final design and implementation of the CCF, explaining how the

different component work and how the CCF interacts with the rest of the SDP and how it can be
used by the stakeholders of the platform.

Impress D7.3.2 Final Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 16 of 16 Submission date: 31st December 2015

6 Bibliography

[1] Case JD, Fedor M, Schoffstall ML & Davin J. (1990) Simple Network Management Protocol (SNMP).

[2] IBM & Eurotech. (2010) MQTT V3.1 Protocol Specification. (online)

http://public.dhe.ibm.com/software/dw/webservices/wsmqtt/MQTT_V3.1_Protocol_Specific.pdf.

[3] Shelby Z, Hartke K & Bormann C. (2013) Constrained Application Protocol (CoAP) draft-ietf-core-

coap-18, RFC 7252. (online) http://datatracker.ietf.org/doc/draft-ietf-core-coap/.

[4] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P & BernersLee T. (1999) Hypertext

Transfer Protocol -- HTTP/1.1, RFC 2616, (online) https://www.ietf.org/rfc/rfc2616.txt.

[5]] Myers J. (1997) Simple Authentication and Security Layer (SASL) (online)
https://www.ietf.org/rfc/rfc2222.txt.

[6] Dierks T., Allen C. (1999) The TLS Protocol Version 1.0 (online) https://www.ietf.org/rfc/rfc2246.txt.

