

(FP7 614100)

D3.3 Communication Management

August 30 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 2 of 19 Submission date: 31/8/2015

Document control page

Document file: D3.3 Communication Management.docx

Document version: 1.1

Document owner: Ferry Pramudianto (Fraunhofer FIT)

Work package: WP3. Resource Abstraction and IoT Communication Infrastructure

Task: Task 3.3 Communication Management

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Ferry Pramudianto 3/7/2015 Introduction

0.2 José Ángel Carvajal Soto 9/7/2015 LinkSmart GlobalConnect

0.3 Alexandr Krylovskiy 20/7/2015 LinkSmart LocalConnect

0.4 Ferry Pramudianto 29/7/2015 Ready made for internal review

1.0 Ferry Pramudianto 12/8/2015 Improved according to the reviewers’

comments

1.1 Marc Jentsch 31/8/2015 Final polishment

Internal review history:

Reviewed by Date Summary of comments

Jussi Kiljander 3/8/2015 Accepted with minor comments

Enrico Ferrera 5/8/2015 Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 3 of 19 Submission date: 31/8/2015

Index:

1. Executive summary ... 4

2. Introduction .. 5

3. LinkSmart LocalConnect .. 6

3.1 Resource Catalog ... 6
3.1.1 Representation and data formats ... 6
3.1.2 Catalog API ... 8

3.2 ServiceCatalog .. 9
3.2.1 Service... 9
3.2.2 Protocols ... 10
3.2.3 Example .. 11
3.2.4 REST API .. 11

3.3 Device Connector ... 12
3.3.1 The Device Gateway (DGW) ... 12
3.3.2 Device Agent ... 13
3.3.3 Process Manager ... 13
3.3.4 Services .. 14

4. LinkSmart GlobalConnect .. 15

4.1 Scenario .. 15
4.2 Definitions ... 15
4.3 Deploying LinkSmart GlobalConnect .. 16

4.3.1 LinkSmart GC Features (Deployment Modes) .. 16
4.4 Tunnelling services using LinkSmart GlobalConnect 17

4.4.1 New Service Registration ... 17
4.4.2 Querying for Service Registration .. 17
4.4.3 Accessing the Service .. 17
4.4.4 Updating Service Registration ... 18
4.4.5 Removing Service Registration ... 18

5. Conclusion ... 19

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 4 of 19 Submission date: 31/8/2015

1. Executive summary

This deliverable describes the IMPReSS communication management, which is extended from the

LinkSmart middleware. In this deliverable, we describe an overhaul of the communication management
concept involving local network communication (communication which does not require public IP

addresses), which is called LocalConnect and the GlobalConnect for enabling communication, which
requires interaction over the internet and behind firewalls.

In the local network communication, IMPReSS relies on two well-known communication standards

including MQTT for enabling publish subscribe communication and REST based communication for
enabling pull based communication. In addition it includes a Catalog service enabling applications to

find the appropriate communication endpoints. In contrast to the IoTResource discovery, the
LocalConnect Catalog provides information how to access the device through the endpoints that are

exposed by the IoTResources, meanwhile the IoTResource discovery provides semantic information to
understand what the values refer to. IoTResource discovery takes the information provided by the

LocalConnect Catalog to provide syntactic information so that the users do not need to access both of

them when developing applications.

The GlobalConnect on the other hand, forms an overlay network over the internet and provides a

tunneling service to send messages through its backbone network that can be easily exchanged using
different technology. Currently it supports JXTA and 0MQ that leverage on P2P and centralized

architecture respectively. The GlobalConnect acts as a router and hides the actual addresses of the

service providers and make them seems as local services to ensure the privacy of the service providers.

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 5 of 19 Submission date: 31/8/2015

2. Introduction

The current LinkSmart depends on x86 based gateways (PCs) to host the middleware components.

Unfortunately, this requires the users to have a high initial investment for hosting the applications
built on top of the LinkSmart middleware. Moreover, relying on PCs for automating appliances is

very inefficient from the energy consumption perspective.

Alternatively, ARM architecture offers a sufficient computing power to run a home or personal

gateway with much lesser costs. While the cheapest x86 based gateway would cost around 200

USD, ARM based computing platform could go as low as 30 USD. Moreover, ARM has been used
widely for mobile devices because of its very efficient energy consumption and at the same time

provides sufficient computing power for mobile devices. This feature is very beneficial for energy
management applications where the overhead of the system must be significantly smaller than the

energy saved in order to achieve a higher return of investment from ICT infrastructure.

Thus, in task 3.3, we extended the LinkSmart core architecture and components allowing the system

to scale down or up easily for different types of gateway. For this purpose, we designed the

communication manager with exchangeable backbone network as plugins. For the backbone
network, we investigated lightweight communication protocols that have gained a lot of support

from IoT community and would work for ARM and x86 architecture.

Initially, the LinkSmart backbone network relies on the P2P paradigm since it offers an ideal solution

to overcome a single point of failure when using distributed resources to perform critical functions.

LinkSmart also uses a P2P network to manage all communication inside the middleware omitting the
need of a central component. The LinkSmart P2P implementation is based on JXTA, i.e. a set of

open protocols that allow the connection and the exchange of information among communication
devices. In LinkSmart, all communication to devices is routed through an overlay P2P network,

leveraging on tunneling mechanisms, allowing services to communicate with each other even if they

are behind firewalls or NATs. The LinkSmart middleware eases communication management,
providing developers with mechanisms that allow for using Web Services instead of having to deal

with the various underlying technologies directly. These features enable communication across
heterogeneous application-domain resources, resulting in direct communication among all devices

inside a LinkSmart network.

In P2P each node must maintain knowledge about the peers to which it communicates to. While this

approach is very resilient against node failures and would work perfectly for a network of PCs, it

requires a lot of computing resources and energy to calculate the routes between peers. Thus, this
approach does not fits well for a mixed network, where less powerful and battery operated nodes

partake. Exchanging information between the peers leads to numerous transmission overhead,
which affects the processing capacity and energy consumptions greatly.

In the IMPRESS project, we redesign the LinkSmart communication concept and divide it into two

major components. The first major component addresses the local network communication, which is
called LinkSmart LocalConnect, and the second major component addresses the communication

between different networks or over the internet, which is called LinkSmart GlobalConnect. This
separation between the two allows us to focus on the communication problems on different levels

and scenarios.

In the LinkSmart LocalConnect, we provide a device and service cataloging, which can be used to

register the available devices and their services. The GlobalConnect disseminates this information to

the other LocalConnect, so that any application may only use the Catalog in its local network and still
having the global overview of the available services. The GlobalConnect is also responsible to tunnel

any communications to the remote devices and services through two kinds of network, a centralized
network using MQTT or Zero MQ, and a P2P network enabled by JXTA.

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 6 of 19 Submission date: 31/8/2015

3. LinkSmart LocalConnect

LinkSmart LocalConnect is a new stack of components, allowing to set up local smart environments

consisting of a number of devices, applications and services, which can be discovered and
communicated with using the publish/subscribe or request/response messaging.

The basic LocalConnect components are:
 Service Catalog, which is discoverable and allows other components to find services such as

the Resource Catalog or the MQTT broker

 Resource Catalog, holding a collection of resources, grouped by devices

 Device Connector, the component that represents one or multiple devices and exposes its

resources

Devices are in general physical devices that are mainly relevant from a deployment perspective.
Each device can have one or multiple resources.

A resource can be a sensor or an actuator.

3.1 Resource Catalog

Resource catalog is the registry of devices and resources they expose.

It manages the registry in its storage back-end and exposes a RESTful Web API, which can be
used as an entry point for any application that want to discover devices and their resources, and

find out how to talk to them.

3.1.1 Representation and data formats
The representation formats used by the Catalog API are based on JSON-LD, which allows for a
clean and readable API and at the same time makes it possible to use Semantic Web (or rather
Linked Data) if needed.
Loosing the restrictions for different protocols and formats specifications, we define higher-level
objects (Collection, Registration, Resource) more strictly, than the lower-level (Protocol,
Representations).
Collection is the highest-level resource of the Catalog API, describing a collection of resources.

Collection
{

 "@context": <string>

 "devices": {}

 "resources":[]

}

where:

 context: here and afterwards, the JSON-LD context

 devices: dictionary of Registration objects

 resources: array of Resource objects

Note: support paging of resources array is planned

Registration is an entry in the resource catalog, exposed as a "resource" with CRUD operations
through the Catalog API.

Every registration is a JSON-LD document:

Registration
{

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 7 of 19 Submission date: 31/8/2015

 "id": <string>,

 "type": <string>,

 "name": <string>,

 "description": <string>,

 "meta": {},

 "resources": [],

 "ttl": <number>,

 "created": <timestamp>,

 "updated": <timestamp>,

 "expires": <timestamp>

}

where:

 id: the URL (mapped to @id in JSON-LD context) uniquely identifying the registration in the
network (or node in the rdf graph)

 type: type of the registration (mapped to @type in JSON-LD context) – useful in the
semantic web context (rdfs:Class)

 name: a simple name of the registration

 description: a human-readable description of it

 meta: an object describing any meta-data related to the device (e.g., device vendor,
location)

 resources: an array of Resources managed by this registration (e.g., sensors/actuators of
a device)

 ttl: the TTL of the registration in seconds, submitted by the client (registration is expired if
not updated within this interval). TTL is -1 for local registrations (they never expire).

 created: iso8601 timestamp showing when the registration was put in the catalog

 updated: iso8601 timestamp showing when it was updated last time

 expires: iso8601 timestamp showing when it will expire

Resource is a resource exposed by the registration in the catalog: for devices connected to the
gateway this is a sensor or actuator.
Eventually, resource can be anything that has a representation and a protocol for accessing it (e.g.,
a simple switch, a virtual sensor)

Resource
{

 "id": <string>,

 "type": <string>,

 "name": <string>,

 "meta": {},

 "protocols": [],

 "representation": {}

 "device": <string>

}

where:

 id: the URL (mapped to @id in JSON-LD context) uniquely identifying the resource in the
network (or node in the rdf graph)

 type: type of resource (mapped to @type in JSON-LD context) – useful in the semantic web
context (rdfs:Class)

 name: simple name of the resource

 meta: an object describing any meta-data associated with the resource (e.g., units for
sensor)

 protocols: an array of Protocol objects – protocols that can be used to access the resource

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 8 of 19 Submission date: 31/8/2015

 representation: a dictionary of Representations – content-types the resource can be
serialized into

 device: a link to the Registration of the device exposing this resource

Protocol describes the protocols for accessing and manipulating the resource state (protocol
semantics).

Protocol
 {

 "type": <string>,

 "content-types": [],

 "endpoint": {},

 "methods": []

}

where

 type: type of the protocol (NOTE: this is not mapped to JSON-LD @type, for now). ATM we
use two types of protocols: "REST" and "MQT""

 content-types: an array of Content-Type strings – keys in the Representation dictionary –
 indicates which representations this protocol support

 endpoint: an object describing the protocol endpoint. Defined for each protocol
individually – everything that is a valid JSON is valid
For HTTP, we use url: <string>, for MQTT – method: <broker-uri:topic>

 methods: an array of protocol verbs (E.g., "GET,POST,PUT,DELETE" for REST,
"PUB,SUB" for MQTT)

Representation is a dictionary where keys are Content-Type strings (same as used in the
Resource.method array)

Representation
{

<key>: {},

...

}

where <key> can be any Content-Type (though this is a convention only as of now – in fact, one can
put there any <string>), and value is an object.
The object can be any valid JSON, e.g., a document describing JSON-Schema, a link to XML
Schema, simple key:value or anything.

3.1.2 Catalog API
We use JSON-LD and Hydra vocabulary for it to eventually implement hypermedia-driven REST
API, though focusing on making it work first (and not expecting every client understand Hydra later).

The API implements CRUD for Registrations, and additionally a read-only API for (LinkedData-
enabled) Resources

 /dc - returns the Collection of all resources (catalog root) + filtering (see below)
o supports: GET

 /dc/:registration - returns a specific registration (Registration.id)
o supports: POST (create), GET (retrieve), PUT (update), DELETE (delete)

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 9 of 19 Submission date: 31/8/2015

 /dc/:registration/:resource - returns a specific resource of a specific registration
(Resource.id)

o supports: GET

Filtering

Catalog API supports a simple filtering inspired by JSON schema:
/dc/:type/:path/:op/:value

where:

 type is one of [device,devices,resource,resources]:
o device, resource returns a single, first matched registration/resource entry (no

order guarantees), in the same format as /dc/:registration
and /dc/:registration/:resource

o devices, resources returns a (filtered) collection, in the same format as /collection

 path is a dot-separated path in json document similar to json-path

 op is one of [equals, prefix, suffix, contains] strings comparison operations

 value is the intended value/prefix/suffix/substring of the key identified by path

3.2 ServiceCatalog

The entry point of the Service Catalog API returns a collection of Services in the following format:

 {

 "id": "<string>",

 "type": "ServiceCatalog",

 "@context": "<string>",

 "services": []

 }

The id field is used throughout the API and describes the location (relative URL) of the returned

resource, fulfilling the indentifiability REST interface constraint. For entry point, it equals to the path
in the API endpoint URL, which is configurable and defaults to /sc.

The fields type, and @context are used to enable LinkedData support and can be ignored by clients

using the plain JSON API described in this document.
The services array holds an array of Services

3.2.1 Service

Each service is represented in the following format:
 {

 "id": <string>

 "type": "Service",

 "name": <string>,

 "description": <string>,

 "meta": {},

 "protocols": [

 {

 "type": <string>,

 "endpoint": {},

 "methods": [],

 "content-types": []

 }

],

 "representation": { },

 "ttl": <int>,

 "created": <timestamp>,

 "updated": <timestamp>,

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 10 of 19 Submission date: 31/8/2015

 "expires": <timestamp>

 }

The id field is a relative URL providing a dereferenceable identifier of the service in the catalog. It is
constructed as /path/ + service-id, where:

 path is the path in the catalog API endpoint URL

 service-id is a unique service identifier in the network and the convention is to construct it
as hostname/servicename

The rest of the fields have following meanings:

 name is a short string describing a service (e.g., "MqttBroker")

 description is a human-readable description of a service (e.g., "Demo MQTT Broker")

 meta is any hashmap describing meta-information of a service

 protocols is an array of protocols supported by a service

 type is a short string describing the protocol (e.g., "MQTT", "REST")

 endpoint is an object describing the protocol endpoint (e.g., URL for a Web API)

 methods is an array of protocol verbs (e.g., "GET,POST,PUT,DELETE" for REST,
"PUB,SUB" for MQTT)

 content-types is an array of strings representing MIME-types defined inrepresentation

 representation is a dictionary describing the MIME-types supported by a service

 ttl is an integer defining the Time-To-Live of a service registration

 created, updated, and expires are generated by the Device Catalog and describe TTL-
related timestamps

 page, per_page and total are used for pagination

3.2.2 Protocols

Services can be exposed through different protocols, and below are conventions for describing some

of them (format of entries in the protocols array).

MQTT

 type: MQTT
 endpoint: {"url": "scheme://address:port", "topic": "/topic"}

o url describes the broker connection information as a URL (RFC 3986) using the

following URI scheme
o topic is an optional field describing the topic used by the service. If the described

service itself is an MQTT broker, can be omitted

o additional fields can be defined
 methods: ["PUB", "SUB"] - array of supported MQTT messaging directions. If the described

service itself is an MQTT broker, this indicates whether it supports subscription, publishing, or

both.
o PUB - indicates that the service publishes data via MQTT

o SUB - indicates that the service subscribes to data via MQTT
 content-types: ["application/json", ...] - array of of supported MIME-types (RFC 2046). Empty

means payload agnostic

REST

 type: REST
 endpoint: { "url": "scheme://address:port"}

o url describes the endpoint URL (RFC 3986)

o additional fields can be defined

 methods: ["GET", "PUT", "POST", ...] - array of supported HTTP methods (RFC 2616)

 content-types: ["application/json", ...] - array of supported MIME-types (RFC 2046)

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 11 of 19 Submission date: 31/8/2015

3.2.3 Example

A registration describing an MQTT Broker may look as follows:
 {

 "id": "/sc/server.example.com/MqttBroker",

 "type": "Service",

 "name": "MqttBroker",

 "description": "Demo MQTT Broker",

 "meta": {

 "apiVersion": "3.1",

 "serviceType": "_mqtt._tcp.server.example.com"

 },

 "protocols": [

 {

 "type": "MQTT",

 "endpoint": {

 "url": "tcp://server.example.com:1883"

 },

 "methods": [

 "PUB",

 "SUB"

],

 "content-types": []

 }

],

 "representation": { },

 "ttl": 120,

 "created": "2014-08-19T08:24:29.283372605+02:00",

 "updated": "2014-08-19T09:21:19.469528757+02:00",

 "expires": "2014-08-19T09:23:19.469528757+02:00"

 }

Note that representation and content-types fields are empty, because MQTT is a wire-level protocol.

3.2.4 REST API

The REST(ish) API of the Service Catalog includes CRUD to create/retrieve/update/delete service

registrations and a simple filtering API to search through the catalog.
As described above, the path is a configuration parameter setting the path in the catalog API

endpoint URL.

CRUD

 /path returns all registered services as ServiceCatalog
o methods: GET

 /path/ endpoint for creating new entries in the catalog

o methods: POST

 /path/<service-id> returns a specific service registration given its unique id as aService

o methods: POST (create), GET (retrieve), PUT (update), DELETE (delete)
o <id> id of the registration

Filtering

 /path/<type>/<path>/<op>/<value>
o methods: GET

o <type> is either service (returns a random matching entry) or services (returns
all matching entries)

o <path> is a dot-separated path in the Service similar to json-path
o <op> is one of (equals, prefix, suffix, contains) string comparison operations

o <value> is the intended value/prefix/suffix/substring of the key identified by<path>

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 12 of 19 Submission date: 31/8/2015

Example

curl http://catalog.example.com/sc/services/meta.serviceType/prefix/_mqtt
will return all services in the catalog which meta.serviceType starts with _mqtt (as MQTT broker

defined in the example above)

Pagination

The Services returned in services array in ServiceCatalog are paged using
the page andper_page parameters.

The results are then include the following additional entries:

 page is the current page (if not specified - the first page is returned)

 per_page is the number of entries per page (if not specified - the maximum allowed is

returned)

 total is the total number of Services in the catalog

Example

curl http://catalog.example.com/sc?page=1&per_page=10 curl
http://catalog.example.com/sc/services/meta.serviceType/prefix/_mqtt?page=

1&per_page=10

Versioning

API version is included as a parameter to the MIME type of request/response:
application/ld+json;version=0.1

3.3 Device Connector

A Device Connector provides integration of heterogenous devices in the LinkSmart middleware,

implementing the functionality of the Device Integration Layer.
Due to the diversity of available IoT devices and possible integration scenarios, it is rather a concept

than a single component. It is expected to have different implementations of the Device Connector

fulfilling the described here functional specification.

A Device Connector must implement the following functionality:

o Manage devices and their resources in the Resource Catalog:

 Publish registrations to (the) remote Resource Catalog(s)
 Continuously update these registrations (keepalive)

 Remove the registrations on devices failures and graceful shutdwon of the Device
Connector

 Optionally, expose local read-only Resource Catalog API with managed resources
o Provide communication with devices over the network via standardized protocols

 Expose APIs of devices/resources via standardized APIs and protocols (HTTP/REST,

MQTT, etc)
 Implement native APIs/protocols of devices internally (if needed)

3.3.1 The Device Gateway (DGW)

The Device Gateway (DGW) provides an implementation of the Device Connector offering a simple

integration of various IoT devices in LinkSmart and rapid prototyping. Implementing the Device
Connector functionality, it and acts as a gateway between the low-level hardware access protocol

and a TCP/IP network. Furthermore, it also includes a local Resource Catalog, which can be used to
discover the devices registered on the DGW.

The main goals behind the DGW design are:

 Pluggable devices support

 Natively compiled for major platforms and architectures, including arm linux

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 13 of 19 Submission date: 31/8/2015

 No modification/re-compilation/re-deployment of the DGW for a new device

 Exposure of device capabilities as network services by declaration/configuration

3.3.2 Device Agent

One of the core concepts of the DGW is the Device Agent - an executable (preferably platform

independent, but in most cases they are dependent due to the different libraries for accessing the
hardware), which implements the low-level communication with the actual device using its interface

and protocol (e.g., talking via GPIO to temperature sensor, reading data via USB or detecting

beacons via BLE). This is the left side of the communication in the Figure below.

The right side of it describes how the Device Agent communicates with the DGW managing its
execution: it is done using the most universal and ubiquitous interface - standard system input and

output streams (stdin, stdout correspondingly). The standard system error stream (stderr) is used

for logging purposes (data written into stderr will be forwarded to DGW for output in the debug
console).

3.3.3 Process Manager

The Device Agent executable is not aware of the DGW and its interfaces. It is a standalone program

that can be executed manually from a command line. In the DGW context, this program is executed
and managed by the DGW's Process Manager, as depicted in the Figure below (a high-level overview

of the DGW architecture):

The core of the system is the Process Manager that reads devices/resources configuration and

executes corresponding device agents and redirects the system streams
(stdin/stdout/stderr).Process Manager supports 3 types of agent execution: task, timer and service.

 task execution means the Device Agent is executed only once per request coming

fromServices component. The last value is cached for a given TTL period.

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 14 of 19 Submission date: 31/8/2015

 timer execution is similar to the task execution, but initiated by the Process

Managerperiodically (using interval value from the configuration). The value is cached in
between the executions.

 service execution means the Device Agent is running as a process and producing output

intostdout constantly. The last value is cached as well.

3.3.4 Services

The Services component is responsible for establishing communication with the devices connected to

the DGW by applications and services over the network via standardized protocols. In current
implementation, REST and MQTT protocols are supported.

The Services component creates a corresponding RESTful endpoint for each devices/resources
configured with REST protocol and establishes a MQTT publication connection for devices/resources

configured to use MQTT protocol. This component passes data from POST/PUT/DELETE HTTP

requests to the corresponding Device Agents by writing it to their stdin and returning the (cached)
value received from stdout to the HTTP GET requests. For resources configured to use MQTT, all

messages written to stdout by the corresponding Device Agents are published to the configured
MQTT broker.

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 15 of 19 Submission date: 31/8/2015

4. LinkSmart GlobalConnect

The basic functionality of the GlobalConnect is to provide a Tunneling Service than enables

transparent communication of applications and services beyond the boundaries of a private
(routable) network. It helps to connects remote LocalConnect environments over the Internet.

A Border Gateway providing Tunneling Service can be used to expose a local network service
(Tunneled Service) to a Global Overlay Network. A Tunneled Service gets tunneled Endpoint on

every Border Gateway connected to the GlobalConnect Network. Applications from another private

network communicate with a Tunneled Service through the local Border Gateway of that network
using the corresponding Tunneled Endpoint.

4.1 Scenario

Service S1 in LocalConnect environment B uses the Tunneling Service (REST endpoint discovered in

the local Service Catalog) provided by the Border Gateway B (BG B) to be tunneled beyond its
LocalConnect environment.

Upon receiving the tunneling request, BG B does the following:
 Registers S1 in the GlobalConnect network and generates a unique identifier for it (Virtual

Address)

 Starts advertising S1 in the GlobalConnect network

Border Gateway A (BG A) in LocalConnect environment A receives the S1 advertisement in the
Global Connect network and does the following:

 Creates a local Tunneled Endpoint for S1

 Publishes the information about S1 with the Tunneled Endpoint in local Service Catalog A

Application A1 running in LocalConnect environment A discovers the Tunneled Endpoint of S1 in the

local Service Catalog A and starts communicating with S1 through the BG A.

The communication proceeds as follows:

 A1 sends a request to the BG A (Tunneled Endpoint) over the private (tcp/ip) network

 BG A forwards the application request to the BG B over the GlobalConnect network

 BG B receives the request from BG A and forwards it to S1 over the private (tcp/ip) network

 S1 processes the application request and sends a response back to BG B over the private

(tcp/ip) network
 BG B forwards the S1 response to BG A over the GlobalConnect network

 BG A receives the response from BG B and forwards it to A1 over the private (tcp/ip)

network

4.2 Definitions

 LocalConnect environment: a deployment of LinkSmart LocalConnect running in a private

network (at least Service Catalog)
 GlobalConnect network: an overlay network connecting multiple LocalConnect environments

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 16 of 19 Submission date: 31/8/2015

 Tunneled Service: a network service running in LocalConnect environment (registered in local

Service Catalog) tunneled in the GlobalConnect network
 Tunneling Service: a LinkSmart GlobalConnect service running in LocalConnect environment that

can be used to expose local services in other LocalConnect environments (turning them

into Tunneled Services) using the GlobalConnect network
 Tunneled Endpoint: a local (tcp/ip) endpoint of a remote Tunnelled Service in a LocalConnect

environment

 Border Gateway: a host providing the following functionality:

- running the Tunneling Service in LocalConnect environment

- providing Tunneled Endpoints for Tunneled Services from remote LocalConnect environments

4.3 Deploying LinkSmart GlobalConnect

LinkSmart GC distribution is equipped with Apache Karaf that is an OSGi run-time container, that

support different start modes and its console provides a full Unix-like environment.
Open a command line console and change the directory to "LINKSMART_HOME".

To start the server, run the following command in Windows:
 bin\karaf.bat

respectively on Unix:
 bin/karaf

upon successful startup, a welcome message would appear and the LinkSmart components are
installed and activated by the container. After it finishes installing the components, one can view the

the log from LinkSmart components:
karaf@root()> log:display

or

karaf@root()> log:tail

to see the (OSGi) bundles status:
karaf@root()> bundle:list

To stop Server from the console, enter D in the console:
^D

Alternatively, you can also run the following command:
system:shutdown

or simply
shutdown -f

4.3.1 LinkSmart GC Features (Deployment Modes)

LinkSmart GC provides different deployment modes with the help of Karaf's feature concept.

Following are the currently available features:

 linksmart-gc

start all LinkSmart GC components (Tunneling, Zmq & Http backbones, NetworkManager,
NetworkManageer_Rest etc)

 gc-http-tunneling

start jetty server, network manager & Tunneling servlet
 gc-backbone-http

start backbone router & Http implementation for Backbone interface

 gc-backbone-zmq

start backone router & ZMQ based implementation of Backbone interface
 gc-network-manager

start netwokr manager and associated components like identity-manager and backbone-router

 gc-network-manager-rest

provide HTTP based (REST) interface for Network Manager for registration, de-registration, and

service discovery etc

The feature:install command installs a feature as follows:
karaf@root()> feature:install linksmart-gc

The feature:uninstall command uninstalls a feature as shown below:
karaf@root()> feature:uninstall linksmart-gc

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 17 of 19 Submission date: 31/8/2015

4.4 Tunnelling services using LinkSmart GlobalConnect

By default, the NetworkManager REST API is exposed during LinkSmart GC bootstrapping.
In case it's not started, the following command can be executed in Karaf console to install the

NetworkManager REST API:
karaf@root()> feature:install gc-network-manager-rest

The NM REST API support four HTTP methods for the following functionality:

1. Register new service (POST)
2. Query register services based on parametrized search criteria (GET)

3. Update existing service registration (PUT)

4. Remove service registration (DELETE)

4.4.1 New Service Registration

For registering a service into the Network Manager, a POST request is needed with a JSON payload.
More information about the payload please see NetworkManager REST API. Below an example

weather service is registered with Network Manager by providing its description and service ID.
curl -X POST -H "Content-Type:application/json; charset=UTF-8"

http://localhost:8082/NetworkManager -d

'{"Endpoint":"http://localhost:8082/WeatherService",

"BackboneName":eu.linksmart.gc.network.backbone.protocol.http.HttpImpl",

"Attributes":{ "DESCRIPTION":"WeatherService",

"SID":"eu.linksmart.gc.example.weatherservice"} }'

The response will be similar to this one below:
{

 "Endpoint":"http://localhost:8082/HttpTunneling/0/1.1.1.1",

 "VirtualAddress": "1.1.1.1",

 "Attributes": {

 "DESCRIPTION": "WeatherService",

 "SID": "eu.linksmart.gc.example.weatherservice"

 }

}

4.4.2 Querying for Service Registration

To query the Network Manager for service registration by its description, GET method is used with
query string attributes, as shown below:
curl -H "accept:application/json"

'http://localhost:8082/NetworkManager?description="WeatherService"'

The response would be a JSON similar to the one below. NOTE: 1.1.1.1 is similar to some real

virtual address "0.0.0.6765991535227307528".
[

 {

 "Endpoint":"http://localhost:8082/HttpTunneling/0/1.1.1.1",

 "VirtualAddress":"1.1.1.1",

 "Attributes": {

 "DESCRIPTION": "WeatherService",

 "SID": "eu.linksmart.gc.example.weatherservice"

 }

 }

]

4.4.3 Accessing the Service

The EndPoint received in a response is actually a virtual endpoint that is used to access the service

through GC Tunneling. It is assumed that service is deployed somewhere and accessible by a

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 18 of 19 Submission date: 31/8/2015

NetworkManager that was used to register service with. Consumer can now invoke the supported
HTTP methods of a service. An example for GET method is given below:
curl http://localhost:8082/HttpTunneling/0/1.1.1.1/service-

path?param=value

4.4.4 Updating Service Registration

HTTP POST request is used to update an existing service registration. The JSON payload required

for this POST is described in NetworkManager REST API. Below weather service is updated for new
description.
curl -X PUT -H "Content-Type:application/json; charset=UTF-8"

http://localhost:8082/NetworkManager -d

'{"Endpoint":"http://localhost:8082/WeatherService",

"BackboneName":eu.linksmart.gc.network.backbone.protocol.http.HttpImpl",

"VirtualAddress":"1.1.1.1", "Attributes":{

"DESCRIPTION":"WeatherService2"} }'

The response will be similar to this one below:
{

 "Endpoint":"http://localhost:8082/HttpTunneling/0/1.1.1.2",

 "VirtualAddress": "1.1.1.2",

 "Attributes": {

 "DESCRIPTION": "WeatherService2"

 }

}

4.4.5 Removing Service Registration

Finally to remove a registered service a DELETE request need to be done with the assigned
VirtualAddress as is shown below:
curl -X DELETE 'http://localhost:8082/NetworkManager/1.1.1.2'

IMPReSS D3.3 Communication Management

Document version: 0.10 Page 19 of 19 Submission date: 31/8/2015

5. Conclusion

The IMPReSS communication management enables application to find MQTT and REST endpoints

that must be offered by the Resource Adaptation Interface (RAI). This allows applications to be
developed independently from the IoT resources in the environment. MQTT and REST could be used

by services to communicate within a local routable network. However, as the network grows
involving the internet connectivity, services may not be able to communicate directly, because of the

firewalls in between. IMPReSS GlobalConnect was created to help developers making their services

accessible through an overlay network which offer transparency as well as security.

To use LocalConnect and GlobalConnect, developers must register their services to the LocalConnect

by invoking a REST API. This knowledge about local services is exchanged between the
LocalConnect and can be accessible through the tunneling service provided by the GlobalConnect.

The LocalConnect expect a periodic registration from the services to be sure that the services are
still alive.

The application developers then could query the catalog to find the endpoints of the services offered

by the RAI. The remote devices will appear with local addresses since any request to them from the
applications are going to be routed by the GlobalConnect.

