

(FP7 614100)

D3.2 Resource and Service Discovery Solutions

2015-02-28 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 2 of 33 Submission date: 2015-02-28

Document control page

Document file: D3.2_Resource_and_Service_Discovery_FINAL.docx

Document version: 1.0

Document owner: Peter Rosengren (CNET)

Work package: WP 3 Resource Abstraction and IoT Communication Infrastructure

Task: Task 3.2 Resource and Service Discovery

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.3 Peeter Kool, Peter Rosengren 2015-02-01 Initial Content

0.4 Peter Rosengren 2015-02-05 Added basic concept

0.5 Matts Ahlsén, Peeter Kool,

Peter Rosengren

2015-05-10 Added description of IoT Resource

Catalogue

0.6 Peeter Kool 2015-05-11 Added API-description for IoT Resource

0.7 Peter Rosengren 2015-05-15 Added API-description for IoT Resource

Catalogue

0.8 Peter Rosengren 2015-05-20 Description of the Catalogue Resource

query language

0.9 Peeter Kool 2015-05-22 Description of IoT Resource Builder Tool

0.99 Peeter Kool, Peter Rosengren 2015-06-08 Proof-read, ready for peer review

1.0 Peeter Kool 2015-06-09 Final version after peer review

Internal review history:

Reviewed by Date Summary of comments

Jussi Kiljander 2015-06-09 Minor comment on grammar.

Ferry Pramudianto 2015-06-09 Accepted

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 3 of 33 Submission date: 2015-02-28

Index:

1 Executive summary ... 4

2 Introduction .. 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 Background .. 5

3 Basic Concepts .. 6

3.1 IoTEntity .. 6
3.2 IoTResource .. 6
3.3 IoTWorld .. 6
3.4 IoT Resource, Entity and Service Catalogue .. 6

4 IoTResource Catalogue ... 10

4.1 Retrieving catalogue data .. 11
4.2 IoTResource Query Language ... 14
4.3 Actuating on IoTResources using the service catalogue 15
4.4 Enabling a service in the IMPRESS platform ... 16

4.4.1 Enabling a service on the IMPRESS network 16
4.4.2 Registering Service Metadata in the IoTResource Catalogue 18

5 Development Tools .. 21

5.1 IoTResource Builder and service annotations .. 21
5.1.1 Service annotations ... 21
5.1.2 Use of The resource builder .. 21
5.1.3 Components in the IoTResource Builder ... 26

5.2 IoTResource Catalogue .. 29
5.2.1 Catalogue Services and Actions .. 30

5.3 IoTResource Catalogue Browser. .. 31

6 References .. 33

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 4 of 33 Submission date: 2015-02-28

1 Executive summary

Impress provides a straightforward model for representing objects in the physical world and their
properties and map them to software resources that allow control and reading of data about the

physical objects. The three main concepts are IoTEntity, IoTResource and IoTWorld. The purpose of

the IoT Resource and Service modules is to discover and map available functionality and services in the
network to these basic concepts.

The IoTWorld is accessed through a Linksmart .net software defined gateway, called an IoTWorld
Gateway. The gateway provides mechanisms for routing requests regarding the physical world to the

appropriate software resource that is able to fulfil the request, such as reporting the temperature in a
particular office space or the current electricity consumption of a household appliance.

This functionality is provided by the IoT Resource Catalogue. The catalogue discovers and keeps track

of available IoTResources in the network. It provides a REST-based interface to select and retrieve data
about IoTResources and their services. The IoT Resource Catalogue provides the means to store more

elaborate metadata regarding the services compared to the Network Manager Service Catalogue. The
IoT Resource Catalogue uses service descriptions that are expressed in an extended version of SCPD

(Service Control Protocol Description) which is the standard for service descriptions in DLNA/UPnP.

Finally Impress also develops a number of tools that are providing automatic support for discovery. The
IoTResource Builder allows a developer to define IoTResources and automatically generate the

necessary IoTResource code stubs. Services can then be built using these IoTResources. The
IoTResources will also automatically register themselves in both the Network Manager Service

Catalogue as well as the IoTResource Catalogue.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 5 of 33 Submission date: 2015-02-28

2 Introduction

2.1 Purpose, context and scope of this deliverable

This deliverable defines the basis for discover and use of resources and services in the IMPReSS project. It is

based on the current development plan and architecture. This deliverable is based on work in task 3.2
“Resource and Service Discovery”. The task is responsible for defining the device and service discovery

mechanisms to be used in the IMPRESS platform.

Section 3 defines basic concepts for Internet of Things discovery. Chapter 4 describes the IoT Resource

catalogue which is the main component responsible for resource and service discovery. Chapter 5 describes

several developer tools that provide automatic discovery support to be included into applications by
developers.

2.2 Background

Both infrastructure-less (resources advertise) and infrastructure-based solutions (gateways advertise) is
taken into consideration. The discovery functionalities are also extended to support specific search

capabilities based on custom criteria. The task will address discovery aspect at both middleware level and at

application domain resources level. In the last scenario, specific discovery capabilities will be analyzed and
implemented within the RAI modules. Resource identification and discovery need to be done in several

levels. ID abstraction for heterogeneous networks into “virtual addresses”. The IoT-A reference architecture
has been the starting point for defining the resource and service discovery mechanisms and tools. Discovery

based on semantic matchmaking that allows resources to be found based on several parameters e.g. QoS,

capabilities, classifications etc. should be integrated into LinkSmart.

CNet will lead the task and will implement resource discovery mechanisms for the specific sensors selected

for the uses cases.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 6 of 33 Submission date: 2015-02-28

3 Basic Concepts

Impress provides a straightforward model for representing objects in the physical world and their

properties and map them to software resources that allow control and reading of data about the

physical objects.

The three main concepts are IoTEntity, IoTResource and IoTWorld. The purpose of the IoT

Resource and Service modules is to discover and map available functionality and services in the
network to these basic concepts.

3.1 IoTEntity

An IoTEntity is a software representation a physical entity, e.g. a house, a car or a door. IoTEntity
corresponds to the IoT-A concept of Virtual Entity. An IoTEntity has properties: a house may have

indoor temperature and energy consumption, a door may be locked or unlocked and opened or
closed. The state of these properties at different points in time – typically generated by an

IoTResource connected to a physical sensor – are represented by IoTStateObservations. The entity
of interest for observations in an IoT system, the things in the physical world we want to observe

and perform actions on. Examples of IoTEntity instances can be rooms, a household appliance or a

person. The IoTEntities have properties that can be observed.

3.2 IoTResource

IoTResources are software objects that provide IoT Services for applications and end-users for
retrieving and analysing data about the physical world as well as invoking actions like switching of a

light. Some examples of IoTResources are software objects representing actuators, sensors, data

streams, databases, etc.

3.3 IoTWorld

A subset of the physical world, a set of IoTEntities that belong together and the associated
IoTResources for observing and acting on this part of physical world. It could represent physical,

functional or organizational units in some application domain. For instance you can model your
house as one IoTWorld, or an office, a complete building or even a whole city, it depends on the

need of your Application. The IoTWorld is accessed through a Linksmart .net software defined

gateway, called an IoTWorld Gateway.

3.4 IoT Resource, Entity and Service Catalogue

The Linksmart.net gateway provides mechanisms for routing requests regarding the physical world
to the appropriate software resource that is able to fulfil the request, such as reporting the

temperature in a particular office space or the current electricity consumption of a household

appliance.

This functionality is provided by the IoT Resource Catalogue. The catalogue discovers and keeps

track of available IoTResources in the network. It provides a REST-based interface to select and
retrieve data about IoTResources and their services.

IoTResources are software objects that provide IoT Services for applications and end-users, e.g.,

retrieving and analysing data about the physical world, invoking actions and so on. Currently three
types of IoTResources have been defined and implemented:

 IoTDevice

 IoTSensor

 IoTThing

IoTResources typically runs in IoTWorld gateways. The IoTResources provides the means to deliver
the information about IoTEntities in the IoTWorld and to actuate on them.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 7 of 33 Submission date: 2015-02-28

As an example see figure below that shows which IoTResources have been discovered on the
IoTWorld gateway ”KURSAAL”, which handles several physical gateways (KURSAAL,

ELO2,CLEMONS) and which IoT Services they offer. IoTResources are discovered and managed by

the IoT Resource Catalogue.

Each IoT Resource provides an easy-to-use REST interface to retrieve data about the resource and it

is current state. It is also possible to invoke actions.

Retrieving Services

By providing the endpoint and the keyword services it is possible to retrieve all services offered.

Figure 1: Service listing

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 8 of 33 Submission date: 2015-02-28

Retrieving Statevariables

Supplying the service name and the keyword statevariables will list all statevariables associated with

the service.

Figure 2: Statevariables listing

Checking Statevariable Values

Figure 3: Statevariable value

Retrieving Actions

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 9 of 33 Submission date: 2015-02-28

Figure 4: Action Listing

Invoking Actions

Actions can be invoked using parameters following the syntax action?param1=X¶m2=Y

Summary

http://<endpoint>/services Retrieves all services offered by the IoTResource

http://<endpoint>/services/<name> Retrieves all state variables associated with the

service

http://<endpoint>/services/<name>/statevariables Retrieves the current value of all state variables

http://<endpoint>/services/<name>/statevariables/<

name>

Retrieves the value of a specified state variable

http://<endpoint>/services/<name>/actions Retrieves all actions that can be performed on the

IoTResource

http://<endpoint>/services/<name>/actions/<name>

?param1=X¶m2=Y

Invokes an action with or without parameters.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 10 of 33 Submission date: 2015-02-28

4 IoTResource Catalogue

The IoT Resource Catalogue provides the means to store more elaborate metadata regarding

the services compared to the Network Manager Service Catalogue. The IoT Resource Catalogue

uses service descriptions that are expressed in an extended version of SCPD (Service Control

Protocol Description) which is the standard for service descriptions in DLNA/UPnP. An example

of the SCPD description is shown below, see Listing 1.

The reason for using the extended SCPD format is that it is well defined and used for service

discovery as well that it is possible to describe services independently of their implementation.

This makes it possible to describe REST based services which do not really have any formal

description language.

There are two ways to register an IoTResource, i.e. service, with the IoT Resource Catalogue:
 UPnP Discovery using SSDP and SCPD

 SELF Registration

If an IoTResource supports the UPnP Protocol the IoTResource will register automatically with

the IoT Resource Catalogue. If a service is integrated using the developer tools this

information will be created mostly automatically and the service will be discovered dynamically

by UPnP as well. But it also possible to manually register the service in the IoT Resource

Catalogue if one prefers by using the RegisterResource action of the catalogue service of the

IoTResourceCatalogue.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 11 of 33 Submission date: 2015-02-28

Listing 1: Example of a service description in SCPD

4.1 Retrieving catalogue data

The IoTResource Catalogue offers a number of services which can be listed using the following
REST-expression: http://<catalogueendpoint>/services. If you type this into a browser the

result will be:

<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:IoTdevice:SharedDataSpace:1</deviceType>
 <gateway xmlns="IoT">AIRBUS</gateway>
 <status xmlns="IoT">web service initiated</status>
 <wsendpoint
xmlns="IoT">http://192.168.9.96:8081/S2D2SDevice/S2D2SService</wsendpoint>
 <virtualAddress xmlns="IoT">128.5151.99292.22222</virtualAddress>
 <networkmanager xmlns="IoT" />
 <friendlyName>S2D2SDevice</friendlyName>
 <manufacturer>BRIDGE Integration Meeting</manufacturer>
 <manufacturerURL>http://wwwcnet.se</manufacturerURL>
 <modelDescription>Proxy for S2D2s</modelDescription>
 <modelName>S2D2s</modelName>
 <modelNumber>1</modelNumber>
 <UDN>uuid:caae981e-cf1f-4cf5-bcc7-6849b45144b2</UDN>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:shareddataspace:1</serviceType>
 <serviceId>urn:upnp-org:serviceId:shareddataspace</serviceId>
 <scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action IoTannotation="">
 <name>ListSubscriptions</name>
 <argumentList>
 <argument>
 <name>subscriptions</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>Subscriptions</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>Subscriptions</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
 </scpd>
 </service>
 </serviceList>
 </device>
</root>

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 12 of 33 Submission date: 2015-02-28

Figure 5: IoTResource Catalogue services

Each service provides a number of actions that can be performed on the IoTResource. The

catalogue service provides the main functionality of the IoTResource Catalogue. You can list all
actions provided by a service with the following REST-expression:

http://<catalogueendpoint>/services/actions. The returned XML specifies the action and the

arguments needed to call it:

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 13 of 33 Submission date: 2015-02-28

Figure 6: IoTResource Catalogue actions

Below is a short explanation of all actions:

GetAllGateways

Returns all gateways known by the catalogue

GetErrorIoTResources

Returns all IoTResources that are in an error state, for instance that have disappeared from the
network without telling about it

GetIoTResource

 Argument: resourceId

 Returns the SCPD for a specified IoT Resource

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 14 of 33 Submission date: 2015-02-28

GetIoTResourcesAtGateway

 Argument: gateway ID

 Returns the SCPD file for all IoT Resources at a specified gateway

GetIoTResourcesEndpoints

 Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by the

catalogue

GetIoTResourcesEndpointsFromXpath

 Argument: Xpath expression

 Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by the

catalogue that matches the xpath description

GetIoTResourcesFromXpath

 Argument: Xpath expression

 Returns the SCPD file for all IoTResources known by the catalogue that matches the xpath
description

RegisterResource

 Register an IoTResource directly not using UPnPDiscovery.

GetManualIoTResources

Returns all IoTResources that has registered themselves and not through UPnP

GetNumberOfIoTResources

 Returns the number of IoTResources, UPnPDevices, ErrorResources

RemoveErrorIoTResources

 Instructs the catalogue to release and forget about the IoTResources that are currently in the error

list

ReScan

 Instructs the catalogue to issue a new M-SEARCH command to find new IoTResources in the
network

ReStartCatalogue

 Instructs the catalogue to forget about all IoTResources and ErrorResources and issue a ReScan
command

4.2 IoTResource Query Language

The IoTResource Catalogue provides a query language for finding IoTResources and their

services. This query language is based on the XPath language1 for querying XML documents,

the IoTResource Description files which are based on the SCPD (Service Control Protocol

Description) from the UPnP-standard. The IoTResource Catalogue takes an XPath expression

and applies it to the SCPD document of the IoTResources. The IoTResources that matches the

XPath expression are then returned.

The following namespaces can be used in the xpath expressions:

 upnp

 IoT

 IoTObservation

1
 http://www.w3schools.com/xpath/

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 15 of 33 Submission date: 2015-02-28

The XPath querying can be used directly in the REST URL:

http://<catalogueendpoint>/<xpathexpression

For example,

http://<catalogueendpoint>//UPnP: serviceType [.=’urn:schemas-upnp-

org:service:shareddataspace:1’]

returns all IoTResources that of the catalogue at that support the service “urn:schemas-upnp-

org:service:shareddataspace:1”

http://192.168.9.15:44441/*

List all available resources

http://192.168.9.15:44441//UPnP:serviceType [.=’ urn:schemas-
upnp-org:service:shareddataspace:1’’]

List all shared dataspace
services known to the

catalogue

http://192.168.9.15:44441//upnp:device[upnp:manufacturer=’CNet

’]

List all resources from

manufacturer CNet

http://192.168.9.15:44441//upnp:device[upnp:manufacturer=’CNet

’][UPnP:serviceType [.=’ urn:schemas-upnp-
org:service:shareddataspace:1’’]

List all resources from

manufacturer CNet running
at a gateway ARMSTRONG

and that is currently

consuming more than 100
W.

4.3 Actuating on IoTResources using the service catalogue

The IoTResource Catalogue provides two means to actuate on an IoTResource:

 By providing the unique identifier of a specific IoTResource

 By providing the local endpoint of a specific IoTResource

 By providing a semantic description that matches one or several IoTResource

Using identifier

The keyword is IoTResource to be supplied directly after the <catalogueendpoint> followed by the

specific identifier and then the actuation expression:

http://<catalogueendpoint>/IoTResources/<IoTresourceid>/services/switch/actions/
TurnOn

Using endpoint

By first calling the action GetIoTResourcesEndpoint in the catalogue service of the
IoTResourceCatalogue you will be able to retrieve the local endpoint of the device and can start

communicating directly with the IoTResource. This method is recommended if you need to do a

massive amount of calls to IoTResource and then you don´t have to go through the central
IoTResourceCatalogue. However, it will only work if your Application is executing in the same local

network as the IoTResources.

http://192.68.1.97:40678/*
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 16 of 33 Submission date: 2015-02-28

 Using Semantic Description

Provide an xpath expression directly after the <catalogueendpoint> followed by the actuation

expression:

http://<catalogueendpoint>/<xpath>/services/switch/actions/TurnOn

Example

Turn on all IoTResources that are of type switchdevice:

http://<catalogueendpoint>//upnp:devicetype[contains(.,’switchdevice’)]/services/sw
itch/actions/TurnOn

Example

Turn off all IoTResources that are from CNet and that currently consumes more than 200W:

http://<catalogueendpoint>//upnp:device[upnp:manufacturer=’CNet’][IoT:currentcon
sumption>200]/services/switch/actions/TurnOff

Notes

One current limitation when using semantic descriptions is that the xpath expression cannot contain

the word services.

4.4 Enabling a service in the IMPRESS platform

There are three main ways of enabling a service in the IMPRESS platform, i.e. making a

service available and accessible on the IMPRESS network:
 Creating a proxy that communicates with service using the IoTResource Builder.

 Incorporating the code generated by the IoTResource Builder into the service.

 Enabling the service using the available IMPRESS Middleware services.

The two first options involving the IoTResource Builder are the easiest way to enable the

service in the IMPRESS network. The code stubs generated already contain the code for

registering the service in the Service Catalogue and it has automatically produced the service

description that will be part of the IoTResource Catalogue. The usage of the tools is described

in section 5.1.

Therefore this section will deal with what is necessary for the third option where the service is

enabled by using the IMPRESS Middleware services. The integration with the IMPRESS system

and network can be done at two different depths depending on ambition level and need. In the

simple integration the service is discoverable and can be invoked using the IMPRESS network

but the caller must now what the service and its API beforehand. In the full integration the

service provides additional metadata describing the service making it possible to dynamically

determine the purpose and API of the service.

The two following sub section will detail how a service can be IMPRESS network enabled by

using the IMPRESS Middleware services.

4.4.1 Enabling a service on the IMPRESS network

In order to register a service on the IMPRESS network the service endpoints must be known.

The endpoint is the URL where the service can be accessed by a client application. The service

can have multiple endpoints, for example in order to make it available using different

protocols, for instance one for REST and one for Web Service protocols. Each of the services

endpoints needs to be registered individually in the Network Manager Service Catalogue

The process is repeated for each endpoint according to these steps:

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 17 of 33 Submission date: 2015-02-28

 Create the meta description for the endpoint. This is a list of key value pairs with properties. Two

values are compulsory in all registrations: DESCRIPTION that describes the endpoint, for instance

S2D2sCNet:REST; SID The service identity, for instance

urn:http:ws:IMPRESS:Middleware:SharedDataSpace:1, this attribute describes which

interface/service is implemented.

 Make a registration call to the local IMPRESS Network Manager to register the service endpoint.

Note that the supplied endpoint must be accessible for the Network Manager to reach, otherwise

the service can never be called.

Listing 2: Example of registering a service endpoint in C#

Listing 2 shows the steps in code where m_wsendpoint contains the endpoint for the service.

The SID (service identity) can be common for many services in the IMPRESS network when

they implement the same service interface (API). When this registration is done the service

and its endpoint is available to the whole IMPRESS network.

//Connect to the Service Catalogue
ServiceCatalogue.NetworkManager sc = new ServiceCatalogue.NetworkManager();
//Using the local network manager
sc.Url = "http://localhost:9090/cxf/services/NetworkManager";

//Using the local network manager
ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[5];
ServiceCatalogue.Part p = new ServiceCatalogue.Part();
//Create the DESCRIPTION (Mandatory key)
p.key = "DESCRIPTION";
p.value = "S2D2SDevice:StaticWS";
parts[0] = p;

//Create the SID (Mandatory key), Service ID
p = new ServiceCatalogue.Part();
p.key = "SID";
p.value = "urn:http:ws:IMPRESS:Middleware:SharedDataSpace:1";
parts[1] = p;

//Create the PID (Optional key), Persistent ID. Needs to be a unique name on
the IMPRESS network.
p = new ServiceCatalogue.Part();
p.key = "PID";
p.value = "my unique id";
parts[2] = p;

//Examples of additional keys
p = new ServiceCatalogue.Part();
p.key = "HOST_NAME";
p.value = Environment.MachineName;
parts[3] = p;

p = new ServiceCatalogue.Part();
p.key = "START_TIME";
p.value = DateTime.Now.ToString(); ;
parts[4] = p;

//Make the registration
ServiceCatalogue.Registration rid = sc.registerService(parts, m_wsendpoint,
"eu.linksmart.network.grand.impl.GrandMessageHandlerImpl");

HID = rid.virtualAddressAsString;
System.Console.WriteLine("Virtual Address:" + HID);

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 18 of 33 Submission date: 2015-02-28

4.4.2 Registering Service Metadata in the IoTResource Catalogue

Using the IoTResource Builder services automatically register to the IoT Resource Catalogue by

using the standard UPnP discovery mechanism. This section will describe how to register the

Service Metadata using IMPRESS middleware service invocations in code.

The actual call to register the services is simple but some extra functionality must be

implemented in order for the service to be properly registered. This requires a small

understanding on how the SCPD works in relation with UPnP and how the IoTResource

Catalogue deals with service descriptions.

IoTResource Catalogue Enabled Service

UPnP device document

Service1 SCPD Service2 SCPD Document

IotResource Catalogue

Manual registration

Retrieve SCPDRetrieve SCPD

Figure 7: Manual IoTResource Catalogue registration

Figure 7 shows how the IoTResource Catalogue finds services manually, the steps are as

follows:

 First the service makes a manual registration of the services it provides, this registration contain links

to SCPD files describing each of the individual services.

 The IoTResource Catalogue retrieves the description of the services and adds them to the

catalogue.

This means that the service must be able to publish the SCPD files for HTTP based retrieval.

This can be done by using any HTTP-based Web Server that can be accessed from the

IoTResource Catalogue.

The UPnP Device document that is provided for the manual registration is a standard UPnP

device document.
<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:IoTresource:testservice:1</deviceType>
 <friendlyName>TestService</friendlyName>
 <manufacturer>IMPRESS</manufacturer>
 <modelName>Test</modelName>
 <modelNumber>1</modelNumber>
 <UDN>uuid:15696574-1a4d-42e0-8907-bee3e110e2f1</UDN>
 <serviceList>

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 19 of 33 Submission date: 2015-02-28

 <service>
 <serviceType>urn:schemas-upnp-org:service:testservice:1</serviceType>
 <serviceId>urn:serviceId:testservice:1</serviceId>
 <SCPDURL>http://127:0.0.1:7237/serviceId-testservice-1_scpd.xml</SCPDURL>
 </service>
 </serviceList>
 </device>
</root>

Listing 3: Example of XML document used to register service
Listing 3 shows a simple example device document that is used to register a service. In this

example only one service is provided “urn:serviceId:testservice:1”, but mor eservices can be

added to the serviceList. The most important parts that need to be eneterd correctly in the

document are:
 friendlyName: This is the name that service will have in different service browser

 serviceId: Should have the same content as the SID used to register in the Network Manager

Service Catalogue

 SCPDURL: This is the link to the SCPD document describing the service, this URL must be

accesible for the IoTResource Catalogue.

The SCPD document for the service needs to be manually created using an XML editor, the

actual syntax and also links to some tools can be found at the UPnP forum web site

http://www.upnp.org/. A very simple example of an SCPD document is shown in Listing 4.
<?xml version="1.0" encoding="utf-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>TestMethod</name>
 <argumentList>
 <argument>
 <name>testInput</name>
 <direction>in</direction>
 <relatedStateVariable>Test</relatedStateVariable>
 </argument>
 <argument>
 <name>testResponse</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>Test</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>Result</name>
 <dataType>boolean</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

Listing 4: Example SCPD

http://www.upnp.org/

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 20 of 33 Submission date: 2015-02-28

The example SCPD can be extended with the service annotations described in section 5.1.1 to

add additional metadata to the service.

Finally we show the code necessary to register the service in the IoTResource Catalogue using

the IMPRESS Middleware API.

public void RegisterService()
{
 XmlDocument xDeviceDocument = new XmlDocument();
 xDeviceDocument.Load("mydeviceDocument.xml");

 IoTResourceCatalogue.ApplicationDeviceManager

IoTResCat = new IoTResourceCatalogue.ApplicationDeviceManager();

 IoTResCat.AddDevice(xDeviceDocument.InnerXml /*xml as string*/);

}

Listing 5: Manual Service Registration in the IoTResource Catalogue

As shown in Listing 5 the actual call to make the registration is simple but the complexity lies

in the creation of the SCPD files and to make sure that the description matches the actual

implementation. Therefore we recommend the usage of the IoTResource Builder tool when

creating or enabling services on the IMPRESS network because the SCPD and registration

information will be created by the tool.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 21 of 33 Submission date: 2015-02-28

5 Development Tools

5.1 IoTResource Builder and service annotations

The IMPRESS middleware provides access to the set of ICT resources in an energy system

context, such as different sensing devices, data repositories, social media streams, UAVs etc.

The middleware service layer provides client applications uniform access to all such resources

(below referred to as IoTResources, which is the LinkSmart resource concept). The

IoTResource Builder allows a developer to define IoTResources and automatically generate the

necessary IoTResource code stubs. Services can then be built using these IoTResources. The

IoTResources will also automatically register themselves in both the Network Manager Service

Catalogue as well as the IoTResource Catalogue.

Complete description, tutorials and download of the IoTResource Builder are available at:

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-

builder/

5.1.1 Service annotations

In order to facilitate the use of IMPRESS services both in run-time and in design time, the

platform supports the annotation of both services and resources. Annotations in this context

means the possibility to associate various semantic descriptions to IoTResources via their

service access points.

The annotations can be made searchable for developers as an aid in service development.

They can also be used to facilitate the resource discovery processes, and service matching for

potential application clients. The annotations are included in the service definitions, which are

used as input to the code generation process, which creates program stubs for IoTResources

There are different levels of service annotations.
 Service Summary, a description of the overall function of a service, including references to standards

or other external sources.

 Service Actions. Each service has one or more actions (operation /methods). Each action

implements some sensing or actuation function. Annotations include action purpose, and arguments

and results.

 Property Level (state variables). The arguments and results, the state variables, can also be

described in more detail, including their value sets and references to standards.

 Effect annotations. Actions can also be annotated with a list of possible effects they might have in

the applications context, or more specifically on other state variables. As an example, turning off a

fan might cause a temperature raise, and perhaps also a decrease in energy consumption.

There are numerous approaches to service description frameworks. The service description tool

does not impose the use of any specific service annotation standard, but rather encourages the

referencing to domain specific standards, controlled vocabularies (or ontologies), in the

annotations of the service semantics, e.g., emergency messaging data set standards like

EDXL.

From a structural and syntactical view, the service description is based on the UPnP2 device

descriptions and the SCPD format, and USDL3.

5.1.2 Use of The resource builder

The IoTResource Builder allows you to define your IoTResources and automatically generate

the necessary IoTResource code stubs. Services can then be built using these IoTResources.

2
 http://www.upnp.org/

3
 Unified Service Description Language, http://linked-usdl.org/

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 22 of 33 Submission date: 2015-02-28

The following sections give examples of how a service can be described using the Resource

Builder tool.

Service Summary

This service will mapped to an IoTResource which monitors in-door air quality, using a CO2

Sensing device in conference room. We start by providing the overall description, the Service

Summary.

Figure 8: Service Summary description using the IoTResource Builder

The annotations are encoded in an XML vocabulary which will be associated to the IoTResource

in the code generation process (see below).

The Service Summary description is shown in its corresponding XML encoding below.

<serviceAnnotations xmlns="IoT">

<name>Indoor Air Quality Service</name>
<version>1</version>
<date>2015-02-23</date>
<shortDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the air quality
in terms of the CO2 levels. Service built on output from the CO2 detection sensor LC-
WRF04 CO2 (manufactured byThermokon, Germany)

</shortDescription>
<longDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the air quality in
temrs of the CO2 levels. The service provides two alternative measures of air quality,
- a numerical value in ppm (parts pper million) CO2
- as a ppm value range (IDA1 - IDA4) which indicates air quality as: High (&lt; 400
ppm), Mediim (400-600 ppm), Moderate (600-1000) ppm, Low (&gt; 1000 ppm).

Device technical details:
Output voltage 1x 0..100000 V (V), 1x 0..10 V (V) (Kopie)
Measuring of , V: CO2
Power consumption max. 3 W / 6 VA
Measuring range CO2 0..2000 ppm

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 23 of 33 Submission date: 2015-02-28

Measuring range temperature depends on used sensor (passive)
Accuracy CO2 ±75 ppm oder 10% vom Messwert (bei 21 °C)
See reference for further device details

</longDescription>
 <referenceUrl>

http://www.thermokon.de/en/products/air-quality/co2/lc-wrf04-co2.html
</referenceUrl>

</serviceAnnotations>

Figure 9: Service Summary XML

Actions

Each action (similar to operations/methods) of a service may also have their own annotations

specified. This example shows an action for reporting the air quality in ppm (parts per million)

CO2 based on a standard for indoor air quality (IDA4).

Figure 10: Action annotation

The corresponding XML follows. It also contains two additional actions for the service.
<actionmetadata xmlns="IoT">

<actionList>
<action name="GetIndoorAirQuality">

<description>
Reports indoor air quality expressed in IDA, see reference to standard.

</description>
<referenceUrl>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84
642115F35A7D9F005762E46B

</referenceUrl>
<effects>

4 http://www.aafeurope.com/en/155/en13779-standard

http://www.thermokon.de/en/products/air-quality/co2/lc-wrf04-co2.html
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 24 of 33 Submission date: 2015-02-28

 No effects reported
</effects>

</action>
<action name="GetCO2Level">

<description>
Reports indoor air quality expressed as level of CO2 in ppm

</description>
 <referenceUrl></referenceUrl>
<effects>

<effect>
<stateVariable></stateVariable>
<description>text explaining possible effect</description>
<referenceUrl></referenceUrl>

</effect>
</effects>

</action>
<action name="TurnOffCO2Sensor">

<description>
Turns off the CO2 Sensor Device and returns the current CO2Level

</description>
<referenceUrl></referenceUrl>
<effects>

<effect>
<stateVariable></stateVariable>
<description>

Device is turned off. Last measurement accessible in log.
</description>
<referenceUrl></referenceUrl>

</effect>
</effects>

</action>
</actionList>

</actionmetadata>

Figure 11: Action annotation XML

As mentioned above, it also possible to describe any additional effects an action might have.

Note that these “effects” are not to be seen as hard dependencies between actions/ state

variables maintained by the service run-time, but rather as a way to document possible effects

in the application context.

In the example above (TurnOffCO2Sensor), the “effect” simply states that at (power) turn off,

the last measured value is available as an IoTObservation from logged data.

Properties (State Variables)

The inputs/outputs of a service are represented by state variables associated with each of the

actions. The Air quality action above reports measurements to be interpreted according to a

standard for in-door air quality using intervals of ppm ranges.

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 25 of 33 Submission date: 2015-02-28

Figure 12: State variable annotation

The corresponding XML encoding for this State variable annotation is shown below.

<statevariablemetadata xmlns="IoT">

<statevariableList>
<statevariable name="airQuality">

<IoTEvent>true</IoTEvent>
 <!—checkbox Event: Generates IoT event when state changes -->
<IoTStored>true</IoTStored>
<!-- checkbox Logged:Store state changes automatically using storage manager -->
<IoTUoM>IDA</IoTUoM>
<!-- Valueset? - Unit of Measurement C, cm, kg....etc -->
<description>
Indoor air (IDA) quality in PPM invervals according to the EN13779 standard
</description>
<referenceUrl>
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642
115F35A7D9F005762E46B
</referenceUrl>
<valueset>

<entry>
<value>IDA4</value>
<description>(Low) CO2Level more than 1000 PPM</description>

</entry>
<entry>

<value>IDA3</value>
<description>(Moderate) CO2Level btw 600-1000</description>

</entry>
<entry>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 26 of 33 Submission date: 2015-02-28

<value>IDA2</value>
<description>(Medium) CO2Level btw 400-600 PPM</description>

</entry>
<entry>

<value>IDA1</value>
<description>(High) CO2Level less than 400 PPM</description>

</entry>
</valueset>
<vsReferenceUrl></vsReferenceUrl>

</statevariable>
Additional variables here….

</statevariableList>
</statevariablemetadata>

Figure 13: Annotations for State Variables

5.1.3 Components in the IoTResource Builder

The IoTResource Builder is built on two separate components, see Figure 14:
 The IoTResource Builder GUI

 The IoT Code Generator

IoT Resource Builder

IoT Resource Builder GUI

IoT Code Generator

Code Generationg XSLTsCode Generationg XSLTs

Project with ready made codeProject with ready made code

IoT Resource Description XMLIoT Resource Description XML

Figure 14: IoTResource Builder Components

The IoTResource Builder GUI creates an IoTResource Description XML which is then sent to the

IoT Code Generator to create the code. The reason for this division is to make the IoT Code

Generator reusable for other tools, for instance the GUI could be replaced by a completely web

based interface but still using the same code generation.

The IoTResource Description XML is based on the UPnP device XML but with some small

differences. Firstly the IoTResources service description (SCPD) is in lined in the Device XML.

Secondly there is an envelope which carries some code generation meta data, see Figure 15.

<device>

 <deviceType>urn:schemas-upnp-org:IoTresource:CO2Sensor:1</deviceType>
 <friendlyName>CO2Sensor</friendlyName>

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 27 of 33 Submission date: 2015-02-28

 <manufacturer>LinkSmart Open Source</manufacturer>
<manufacturerURL>

http://www.iotworldservices.com/wiki/iotworldserviceswiki/

</manufacturerURL>
 <modelDescription>

CO2Sensor UPnP Device Using Auto-Generated UPnP Stack
</modelDescription>

 <modelName>CO2Sensor Device</modelName>
 <modelNumber>X1</modelNumber>
 <productCode>CO2Sensor-X1</productCode>
 <serviceList>
 <service>
 <serviceName>CO2SensorProject</serviceName>
 <serviceType>urn:schemas-upnp-org:service:CO2Sensor::1</serviceType>
 <serviceId>urn:upnp-org:serviceId:CO2Sensor</serviceId>
 <SCPD>
 <specVersion xmlns="urn:schemas-upnp-org:service-1-0">
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList xmlns="urn:schemas-upnp-org:service-1-0">
 <action>
 <name>GetCO2Level</name>
 <argumentList>
 <argument>
 <name>CO2Level</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>CO2Level</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetIndoorAirQuality</name>
 <argumentList>
 <argument>
 <name>airQuality</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>airQuality</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>TurnOffCO2Sensor</name>
 <argumentList>
 <argument>
 <name>CO2Level</name>
 <direction>in</direction>
 <relatedStateVariable>CO2Level</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable xmlns="urn:schemas-upnp-org:service-1-0">
 <stateVariable sendEvents="no">
 <name>_IoTActionMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>
 <?xml version="1.0" encoding="utf-8"?>

<actionmetadata xmlns="IoT">
<actionList>

Actions Annotations

http://www.iotworldservices.com/wiki/iotworldserviceswiki/

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 28 of 33 Submission date: 2015-02-28

</actionList>
</actionmetadata>

 </defaultValue>

 </stateVariable>
 <stateVariable sendEvents="no">
 <name>CO2Level</name>
 <dataType>i2</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>_IoTResourceMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>

<serviceAnnotations>

</serviceAnnotations>
 </defaultValue>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>_IoTStateVariableMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>
 <?xml version="1.0" encoding="utf-8"?>
 <statevariablemetadata xmlns="IoT">
 <statevariableList>

 </statevariable>
 </statevariableList>
 </statevariablemetadata>
 </defaultValue>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>airQuality</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
 </SCPD>
 </service>
 </serviceList>
 </device>
 </root>
 </upnp>
</DeviceInfo>

Figure 15: Example of an IoTResource Description XML. Coloured rectangles represent the annotation sections.

There are four specific tags in the Environment section that controls the code generation:
 CodeNameSpace: The namespace used for the code generated, usage depends on target

language.

 ProjectName: The name used for the resulting code project.

 ClassName: Class name stem used for the generated classes for the IoTResource.

 IoTResourceType: Decides which type IoTResource code is generated, current possible values are

IoTDevice, IoTService and IoTThing.

State Variables annotations

Service Summary annotation

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 29 of 33 Submission date: 2015-02-28

The actual code generation is performed by using XSLT transformations using the IoTResource

Description XML as input. The set of XSLT transformation5 create the output files that are part

of the resulting development project solution.

Figure 16: Development environment generated

Initially C# Visual Studio projects are supported as target environment. However, with the use

of XSLT this can be easily extended to support other languages such as java, swagger.

5.2 IoTResource Catalogue

The IoTResource Catalogue discovers and keeps track of available IoTResources in the network

and their service descriptions. It provides a REST and Web Service based interface to select

and retrieve data about the IoTResources and their services. As an example see Figure 17

below that shows which IoTResources have been discovered on the gateway ”KURSAAL”, which

handles several physical gateways (KURSAAL, ELO2,CLEMONS) and which IoT Services they

offer. IoTResources are discovered and managed by the IoT Resource Catalogue.

Figure 17: IoT Resource Catalogue

5 See LinkSmart code repository https://linksmart.eu/redmine/

https://linksmart.eu/redmine/
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 30 of 33 Submission date: 2015-02-28

5.2.1 Catalogue Services and Actions

The IoTResource Catalogue offers a number of services which can be listed using the following

REST-expression:

 http://<catalogueendpoint>/services.

If you type this into a browser the result will be:

Figure 18: Catalogue Services

Each service provides a number of actions that can be performed on the IoTResource. The

catalogue service provides the main functionality of the IoTResource Catalogue. You can list all

actions provided by a service with the following REST-expression:

http://<catalogueendpoint>/services/actions

The returned XML specifies the action and the arguments needed to call it:

Figure 19: Result of Resource Catalogue Query

Below is a short explanation of all available actions:

GetAllGateways

Returns all gateways known by the catalogue

http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueservices.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueactions.png

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 31 of 33 Submission date: 2015-02-28

GetErrorIoTResources

Returns all IoTResources that are in an error state, for instance that have disappeared from

the network without telling about it

GetIoTResource

Argument: resourceId

Returns the SCPD for a specified IoT Resource

GetIoTResourcesAtGateway

Argument: gateway ID

Returns the SCPD file for all IoT Resources at a specified gateway

GetIoTResourcesEndpoints

Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by

the catalogue

GetIoTResourcesEndpointsFromXpath

Argument: Xpath expression

Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by

the catalogue that matches the xpath description

GetIoTResourcesFromXpath

Argument: Xpath expression

Returns the SCPD file for all IoTResources known by the catalogue that matches the xpath

description

RegisterResource

Register an IoTResource directly not using UPnPDiscovery.

GetManualIoTResources

Returns all IoTResources that has registered themselves and not through UPnP

GetNumberOfIoTResources

Returns the number of IoTResources, UPnPDevices, ErrorResources

RemoveErrorIoTResources

Instructs the catalogue to release and forget about the IoTResources that are currently in the

error list

ReScan

Instructs the catalogue to issue a new M-SEARCH command to find new IoTResources in the

network

ReStartCatalogue

Instructs the catalogue to forget about all IoTResources and ErrorResources and issue a

ReScan command

5.3 IoTResource Catalogue Browser.

IoT Resource Catalogue Browser provides a user interface to look and interact with IoT

resources in the network node. Basically it provides a user interface to the IoT Resource

Catalogue. The IoT Resource Catalogue Browser can be used for looking at the service

descriptions and also to invoke actions in the service (If the service supports this)

Complete description examples and downloads of the IoT Resource Catalogue Browsers are

available at: http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-

browsers/.

 When you double click on the executable it browser will first discover the IoTResource

Catalogue in your local network. If you click on the catalogue name in the tree, you will see

three tabs to the right. The first tab shows you the number of IoTResources this catalogue has

discovered.

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 32 of 33 Submission date: 2015-02-28

Figure 20: Initial Windows IoT Resource browser window

The second tab shows the IoTResourceIds and the endpoints to the different IoTResources. In

case there are IoTResources which are in some error state and therefore cannot be accessed,

they will be listed in the third tab.

Figure 21: Second Tab with IoT Resources end points

You can now expand the tree on the left. The gateway nodes correspond to different hardware

gateways (normally computers) in your network which hosts the IoTResources. If you click on

one IoTResource, you will see three tabs to the right. The first tab (IoT) lists the state

variables/properties that are specific for LinkSmart.

Figure 22: Expanded view

http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser1.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser2.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

IMPReSS D3.2 Resource and Service Discovery Solutions

Document version: 1.0 Page 33 of 33 Submission date: 2015-02-28

6 References

Use the following style for references.

(EC, 2007) European Commission (2007). A lead market initiative for Europe.

Brussels. COM(2007) 860 final.

(Milagro et al 2008) Milagro, F., Antolin, P., Kool, P., Rosengren, P., Ahlsén M. (2008). SOAP

tunnel through a P2P network of physical devices, Internet of Things

Workshop, Sophia Antopolis.

(Chen et al 2007) Chen, Y.C., Liu, C.H., Wang, C.C., Hsieh, M.F. (2007). “RFID and IPv6-

enabled Ubiquitous Medication Error and Compliance Monitoring System”,

9th International Conference on e-Health Networking, Application and

Services, 2007, 19-22 June 2007 Page(s):105 - 108.

