
Document version: 1.2 Submission date: 31 October 2014

(FP7 614100)

D5.1.1 Initial Data Analysis & Knowledge Repository Technical
Specifications & Guidelines

 31 October 2014 – Version 1.2

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 2 of 33 Submission date: 31 October 2014

Document control page

Document file:

 D5.1.1_Initial_Data_Analysis_&_Knowledge_Repository_Technical_Sp

ecifications_&_Guidelines.doc

Document version: 1.2

Document owner: Djamel Sadok (UFPE)

Work package: WP5 – Data Storage, Analysis & Decision Support

Task: T5.1 Data and knowledge management support

Deliverable type: R

Document status: [X] approved by the document owner for internal review

 [X] approved for submission to the EC

Document history:

Versio

n

Author(s) Date Summary of changes made

0.1 Eduardo Souto (UFAM) 20/02/2014 First Draft.

0.2 Lucas Lira Gomes (UFPE) 27/02/2014 Revised the document.

0.3 Lucas Lira Gomes (UFPE) 28/02/2014 Revamped section 2.

0.4 Eduardo Souto (UFAM) 28/02/2014 Document sent for internal review.

1.0 Djamel Sadok (UFPE) 03/03/2014 Final editing. Final version submitted to the

European Commission.

1.1 Lucas Lira Gomes (UFPE) 16/03/2014 Addressed the concerns of the reviewers.

Fixed minor typos.

1.2 Walter Andrade (UFPE) 31/10/2014 Major changes in the gremlin DSL

documentation.

Internal review history:

Reviewed by Date Summary of comments

Carlos Kamienski (UFABC) 05/03/2014 Accepted with minor corrections and comments

Jussi Kiljander (VTT) 05/03/2014 Accepted with minor corrections and comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 3 of 33 Submission date: 31 October 2014

Table of Contents

Executive summary .. 4

Introduction ... 5

1. IMPReSS Platform Overview .. 6

2. Data, Policy and Knowledge Storage Module ... 7

2.1 Data Model ... 7
2.2 Proposed Architecture .. 9

3. Domain Specific Language – DSL ... 13

3.1 Impress' DSL Documentation ... 13
3.1.1 Impress' DSL Steps ... 28
3.1.2 Gremlim's Useful Steps .. 30
3.1.3 Impress' DSL Functions ... 31

4. Initial Performance Evaluation ... 32

References ... 33

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 4 of 33 Submission date: 31 October 2014

 Executive summary

This deliverable describes the initial technical specification of the data and knowledge repository used by the

IMPReSS cloud. In the IMPReSS cloud, data semantics and analytics are fundamental to the the decision

making process. Effectively managing the storage resources and data in the cloud is of paramount
importance to maintaining satisfactory service levels.

In that sense, this deliverable aims to provide the foundations for a distributed and scalable storage solution
for the IMPReSS cloud.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 5 of 33 Submission date: 31 October 2014

Introduction

The Internet of Things (IoT) is a concept that encloses a plethora of technologies and their

applications, providing the means to access and control all kinds of smart devices (also named as

“things”). IoT covers a wide range of objects, such as sensors, actuators, mobile devices, industrial

controllers, HVAC (heating, ventilation, air-conditioning) units, household appliances like smart TVs

and refrigerators, and so on. Radio Frequency Identification (RFID) and sensor network technologies

have often been used to measure, infer and understand environmental indicators around us. This

often results in the generation of huge volumes of data that have to be stored, processed and

presented in a seamless, efficient, and easily interpretable form [1]. To meet these requirements,

the Cloud Computing technologies can be used as an infrastructure for the storage, processing and

computing of such massive amounts of data generated by highly distributed smart devices (e.g.

sensors and actuators).

It is in this context, that this deliverable presents the initial technical specification of the data and

knowledge repository adopted for use within the IMPReSS project [2]. The main idea is to provide a

cloud infrastructure able to manage very large sets of globally distributed non-structured or semi-

structured data. The data generated by devices employed in the IMPReSS platform will be produced

at very high rates and needs to be pre-processed in a timely manner, in order to be used as input by

the data analysis and machine learning modules (as described in Tasks 5.2 and 5.3 of the project

proposal).

The current decision greatly affects Work Package 5 (Data Storage, Analysis & Decision Support).

This is concerned with providing tools allowing developers to consistently manage massive amount

of the acquired data from the smart objects, analyze and extract information and finally transform

data into knowledge that is useful for the application domain within the integrated IMPRESS

platform. This deliverable, in particular, defines the Data, Policy and Knowledge Storage module

specification.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 6 of 33 Submission date: 31 October 2014

1. IMPReSS Platform Overview

The IMPRESS platform can be seen as a software platform in the cloud designed to manage

ubiquitous sensor data. It was engineered to provide a set of tools to help users (end-users and

application developers) to build and manage connected smart devices and applications based on

connected things.

The platform has been designed to facilitate the integration with sensing technologies, networking

applications, data mining and processing tools. This enables users to collect and visualize

environmental information while compiling and adding value to such information, in order to

generate knowledge about the acquired data.

Figure 1 provides a complete overview of the IMPRESS platform components.

Figure 1: IMPReSS platform Overview.

The Data, Policy and Knowledge Storage module is responsible for managing the persistence of

various data and information sets. By leveraging on NoSQL databases, it maintains informations such

as historical sensor data, inferred knowledge, policies, configurations and etc. It makes available for

others components of the IMPRESS platform services such as the storage of both raw data and

enhanced information.

Next sections provide details of data storage specification and implementation.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 7 of 33 Submission date: 31 October 2014

2. Data, Policy and Knowledge Storage Module

2.1 Data Model

The term data model has been used in the information management community with different

meanings and in diverse contexts. In its most general sense, a data model is a concept that

describes a collection of conceptual tools for representing real-world entities to be modelled and the

relationships among these entities [3].

There are different models that may be used in the data modelling area such as hierarchical,

relational, semantic, object-oriented, graph, and semi-structured. Among all of them, the relational

model, which introduces the idea of separation between physical and logical levels, is the most

popular and widely employed among the business applications [4]. However, this classical model has

been criticized for its lack of semantics. Its flat structure imposes difficulties for the user to map the

connectivity of the data, both conceptually and during the implementation.

Under the IMPRESS platform, the data semantics and analytics are the fundamental features needed

to support the decision making process. Multi sensor data fusion provides a means to fuse raw data

into meaningful higher-level information for the users. Moreover, the recognition of the modelled

situations requires understanding the technicalities of each sensor, signal processing, sensor fusion

techniques to combine readings from different sensors. In such scenario, where the information

about the interconnectivity or the topology of the data is more important than, or as important as,

the data itself, the data modelling based on graph has several advantages.

First, graphs provide a natural and flexible way to represent information about real world (i.e. real

world objects are nodes and relations between different objects are vertexes/edges).

Second, typical graph databases provide built-in structures (i.e. nodes and edges) to represent

graphs. Whereas in other databases, relationships between entities in the data model would have to

be handled by the modeller at the model level. Or in other words, new tables or columns, at least in

the SQL case, would have to be maintained only for the sake of being used as query indirection

stages that point to other entities, probably via foreign keys.

For these reasons, the data modelling adopted in the project is based on a property graph

representation. In the realm of graphs' morphism, a property graph is a vertex/edge-

labeled/attributed, directed, multi-graph. More details, on why a property graph representation was

favoured over RDF's edge-labeled directed graphs, will be given in the Architecture section. The data

modelling is based on sensor readings arranged in a certain physical environment. The setting may

have an infinite number of areas, which in turn may or may not embody other areas within it. Each

area may contain an indefinite number of devices that belong to a sensor network. These devices

will perform several measurements of the various parameters throughout the day, while it is

necessary to store a history of such readings possibly for an indefinite time, depending on

application requirements. A generic description of the IMPRESS scenario is shown in Figure 2.

The data modelling has the following types of nodes:

 Area (yellow) - these nodes store a representation of a given monitored environment, such

as area type, area name, so on. This type is used to hierarchically divide the environment

into classes (e.g. rooms, hall, and garden).

 Device (green) - these nodes represent the devices contained in the environment, such as

sensors, actuators, controllers, and mobile devices. This node entails the type of device and

its network address.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 8 of 33 Submission date: 31 October 2014

 Measurement Variable (red) – these nodes represent the variable being measured in the

environment, such as humidity, temperature, and energy.

 Measurement History (purple) - the measurement history of each device was modelled in as

a linked list, aiming to minimize the impact of query time when historical data grows bigger.

 Category (blue) – A node for classification of devices, e.g. illumination, HVAC, so on. Each

category is unique and can classify devices in a one-to-many fashion.

As for the edges, the types are:

 has – these edges link an area to the sub-areas it is composed of. Generating a hierarchy of

spatial representations of the measured environment.

 interacts – this edge specifies which measurement variables can be measured by the device

it is linked to.

 was measured – this edge link measurement histories, in a chronological order, to the device

that measured it. Note that this edge, in particular, contains a timestamp property,

representing the time the measurement history it points to was measured.

 comprehends – is the relation between a category and the device it classifies. Each category

can comprehend many devices with the same characteristics.

Figure 2: Data Model for the Data, Policy and Knowledge Storage module.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 9 of 33 Submission date: 31 October 2014

As a result of the data model depicted at Figure 2, flexible and powerful queries could be performed, such
as:

 Querying which devices can/cannot measure a given measurement variable. As well as list the areas

that have devices measuring their temperature, for instance.
 Querying the area where a given device is located, via the device's IP. Or, alternatively, list all the

devices in a given area.

 Querying all the sub-areas of a given area, via its area's name.

 Querying all the measurement histories, in a given time range, for a specific area. Despite the

device that measured them.
 Etc.

2.2 Proposed Architecture

The Data and Knowledge Storage module consists of a set of technologies responsible for managing

and storing data. These technologies are based on a NoSQL database, more specifically, a graph-

based one.

Graph databases are perhaps the most popular graph computing technology. They provide

transactional semantics such as ACID, which is typical of local databases, and eventual consistency,

which is typical of distributed databases. Different from in-memory graph toolkits, graph databases

use the disk to store the graph data. On sufficiently powerful machines, local graph databases can

support a couple billion edges while distributed systems can handle hundreds of billions of edges.

However most distributed graph-based NoSQL databases, like Neo4j [11], does not provide the

means for global graph algorithms to be performed within a reasonable milliseconds time scale, in a

hundreds of billions of edges scenario. And since WP5 tasks leverage heavily in the data processing

for the machine learning and data fusion techniques, be able to have a continuous feedback loop

that works almost in quasi real time and have a global view of the current and past state of the

system, mainly due to global graph algorithms, is invaluable.

Considering this practical concern, we adopt the Titan [5] open implementation as distributed graph-

based NoSQL database. Therefore, we can represent our data model, as depicted in Figure 2,

without any modifications. This data model fits perfectly the knowledge inference case that further

WP5 tasks require, since knowledge can be easily represented with graphs as a set of relations

between concepts. RDF and ontologies, for instance, are just graphs connecting subjects and objects

via a predicate, i.e., triples. Graph-based NoSQL databases, however, have a clear advantage over

RDF and ontologies. They have built-in database support to triples, while ontologies and RDF require

extra parsers, at the application level, to extract semantics from the employed syntax (e.g. XML,

Turtle, Notation 3, etc). Obviously, RDF is a standard and is widely used by the linked data

community, however it was not envisioned to be used in a distributed context that suits our

proposed use case. It certainly fits well for the use case of the web, with a whole architecture based

on documents being exchanged from a web server to clients using a request-reply pattern. But as

the size of the a RDF document grows, it is up to the libraries' implementers to figure out how to

deal with scalability problems. Like graph partitioning and distributed processing of the RDF

documents. Not handling that can hinders the usage of RDF to store vast amounts of data.

As for Titan, graph partitioning, among Titan instances, and distributed batch processing, via

Faunus, are already implemented. These two features per se permits Titan to scale horizontally,

which was one of our major concerns from the very beginning.

Despite that, property graphs explicitly separate out node/edge specific key/value data from the

underlying graph structure as a design-time decision. When using triple stores in practice, most of

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 10 of 33 Submission date: 31 October 2014

the edges turn out to be spurious. Since 'properties' of a node are not first class citizens of the graph

structure itself. In RDF, for instance:

:a :hasAge "24".

:a foaf:knows :b.

These are both triples and hence considered graph edges, but only the second one represents

connectivity in a graph sense. The first 'edge' is not really an edge, but a property of :a with no

meaning outside of :a, since it is simply a literal and not a real entity per se.

As a side note, Titan supports several storage backends. Like Cassandra, which is a column-family

NoSQL database developed and open sourced by Facebook in 2008, Hbase [19], which is an open

source implementation of Google's BigTable, Oracle Berkeley DB [20] and Akiban Persistit [21]. For

this proposed architecture, we favoured Cassandra, due to its maturity and large developer

community.

At the scale of hundreds of billions of edges and with several concurrent users, where random

access to disk and memory are at play, global graph algorithms are not feasible. What is feasible is

local graph algorithms/traversals. Instead of traversing the entire graph, some set of vertices serve

as the source (or root) of the traversal. To tackle the need for global graph algorithms/traversals,

batch processing graph frameworks can be used. Most of the popular frameworks in this space

leverage on Hadoop [16] for storage (HDFS) and processing (MapReduce). These systems are

oriented towards global analytics. That is, transversals that pass through the entire graph dataset

and, in the case of iterative algorithms, touch the entire graph many times. Such analyses do not

run in real-time. However, because they perform global scans of the data, they can leverage

sequential reads from disk (see [6]).

Along with Titan, we use Faunus [7] for distributed batch processing and support graph analytics in

a timely manner. Faunus is able to distribute queries steps in the available Titan clusters and load

balancing the workload. Therefore, drastically reducing latency for database operations in graphs

with billions of edges and nodes. Faunus works on top of Hadoop, which is an open source project

backed by the Apache Foundation and based on Google's Map-Reduce white paper. Also, it is

noteworthy that both Titan and Faunus, following the trend of technologies around NoSQL

databases, can scale horizontally by adding more clusters. That is, if in a given scenario the current

servers can no longer handle the load, one may simply execute more instances of Faunus and Titan

in a divide and conquer strategy to attend the usual batch of database queries performed in our

proposed architecture.

For querying, we use a domain-specific language, the Gremlim language [8], which can perform

complex operations in multi-relational graphs, called property graphs. Gremlim is based on the

Groovy language [10]. With Gremlin it is possible to perform operations such as the addition or

removal of nodes/edges, manipulate the graph indexes, complex graphs transversals, etc. Also, it is

part of the Blueprints [5] stack. The equivalent of Gremlin in the RDF world is SPARQL [17].

Comparatively, SPARQL does not support iteration/looping, consequently being particularly hard to

compute graph-structural metrics like centrality. In that sense, Gremlin is more powerful than

SPARQL.

The Blueprints stack is an open source property graph model for a common interface that can

facilitate the interaction with the underlying supported graph databases. Among the supported

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 11 of 33 Submission date: 31 October 2014

databases there are: Neo4j [11], Titan [5], OrientDB [12], SparkSee [13] and more. More

importantly, these cited databases are currently seen as some of the major players in terms of graph

database usage. Despite the considerable number of supported alternatives, leveraging on a

common interface can help us to avoid having the IMPRESS architecture tied to specific proprietary

solutions. Such problem could impose barriers in the event of changing the underlying graph

database used by the Impress cloud. The blueprints stack is maintained by a group called Tinkerpop

[14], which entails as one of its members the lead developer of Titan. Also, notice that Blueprints is

not a programming library per se. It is an API that has several implementations in many

programming languages, like Java and Python.

Finally, we chose to use a Rexter server [9], which is also part of the Blueprints stack, to be the

interface exposed for developers to execute database operations, via Gremlim queries. Or, in other

words, the Rexter server allows developers to communicate with Blueprints-enabled graphs in a

language agnostic fashion. That is, we could change the underlying NoSQL graph database at any

time, without requiring any source code change in the clients of the Data, Policy and Knowledge

Storage module. Also, Blueprints is a Java API for graph databases. So, by using Rexter, developers

can access the Blueprints API over HTTP/REST directly or by using libraries that support Blueprints

API, like PyBulbs [18] for Python. Both Titan and Faunus clusters are just part of the required

infrastructure, but they are not directly exposed to other modules. The Rexter server supports both

a JSON-based REST interface and a binary protocol called RexPro. In our architecture, we favoured

the RexPro case due to its smaller footprint. When a Gremlim query is received, the Rexter server

passes it to one of the Faunus clusters and waits for the response, which is then replied back to the

requester.

Finally, Figure 3 shows the overview of the Data, Policy and Knowledge Storage module

architecture.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 12 of 33 Submission date: 31 October 2014

Figure 3: Data, Policy and Knowledge Storage module architecture.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 13 of 33 Submission date: 31 October 2014

3. Domain Specific Language – DSL

Gremlim is a flexible and powerful query language, but it certainly requires previous knowledge

about graphs structures (i.e. nodes and edges) and their algorithms. Albeit graphs are certainly not

a new concept, especially due to their mathematical origin, their usage for modelling data and

consequently the awareness of their implications still not mainstream. Therefore, we have built a

domain specific language (DSL) on the top of Gremlim, so that we can abstract the most common

operations technicalities (e.g. adding/removing nodes, dealing with relationship between nodes, etc)

regarding the data model depicted in Figure 2. Like, for instance, instead of directly creating a node

for a device, set its IP property, link it to the intended area and to a set of measurement variable

nodes, a developer could use the createDevice (ip,area_contained,measure_types) construct that is

part of the DSL, so that most part of the graph manipulation process regarding the data model is

hidden from clients. Alternatively, the DSL can be seen as a higher level interface (API) to interact

with the proposed data model depicted in Figure 2. From this point on, we will refer to this new DSL

as Impress' DSL. The Impress' DSL, however, is not as flexible as Gremlim's core constructs.

Nevertheless, since Impress' DSL is basically just another layer on top of Gremlim, the underlying

query language remains Gremlim. And that is an important decision choice we made, since it can

please both newcomers, eager to perform simple queries using Impress' DSL, and more advanced

users, that can mix Gremlim core constructs with Impress DSL's calls.

3.1 Impress' DSL Documentation

area(name)

Arguments:

name: String , null

Return:

Returns an area if a name is specified or a list of all areas if no name is passed as argument.

Definition:

Gremlin.defineStep('area',[Vertex,Pipe],

{name -> _().ifThenElse{name == null}

{it.has('Type','Area')}

{it.has('Type','Area').has('Name',name)}})

Example for a graph g:

 http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.area()

{

 "results": [

 {

 "Name": "Lab Grad-1",

 "Type": "Area",

 "_id": 31744,

 "_type": "vertex"

 },

 {

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 14 of 33 Submission date: 31 October 2014

 "Name": "UFPE",

 "OptionalParameters": {

 "Description": "University",

 "UF": "Pernambuco"

 },

 "Type": "Area",

 "_id": 30208,

 "_type": "vertex"

 },

 {

 "Name": "Theater UFPE",

 "OptionalParameters": {

 "Description": "Facility where the UFPE Demo takes place"

 },

 "Type": "Area",

 "_id": 30720,

 "_type": "vertex"

 },

 [...]

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 908.6409

}

 http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.area().map()

 {

 "results": [

 {

 "Name": "Lab Grad-1",

 "Type": "Area"

 },

 {

 "Name": "UFPE",

 "OptionalParameters": {

 "Description": "University",

 "UF": "Pernambuco"

 },

 "Type": "Area"

 },

 {

 "Name": "Theater UFPE",

 "OptionalParameters": {

 "Description": "Facility where the UFPE Demo takes place"

 },

 "Type": "Area"

 },

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 15 of 33 Submission date: 31 October 2014

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 890.9162

}

 http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.area().next()

 {

 "results": [

 {

 "Name": "Lab Grad-1",

 "Type": "Area",

 "_id": 31744,

 "_type": "vertex"

 },

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 908.6409

 }

 http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.area(“UFPE”)

{

 "results": [

 {

 "Name": "UFPE",

 "OptionalParameters": {

 "Description": "University",

 "UF": "Pernambuco"

 },

 "Type": "Area",

 "_id": 30208,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1319.4897

}

areaPerDevice(ip)

Arguments:

ip: String

Return:

Return an area containing the device specified

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 16 of 33 Submission date: 31 October 2014

Definition:

Gremlin.defineStep('areaPerDevice',[Vertex,Pipe], {ip -> _().ifThenElse{ip ==

null}{it.has('Type','Device').has('IP',it.IP).in('has')}{it.has('Type','Device').has('IP',ip).in('has')}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.areaPerDevice("192.168.0.1")

{

 "results": [

 {

 "Name": "Lab Grad-1",

 "Type": "Area",

 "_id": 31744,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1307.5148

}

areaPerUnit(unit)

Arguments:

unit: String

Return:

Returns a list of area that contains the unit specified measured by at least one device.

Definition:

Gremlin.defineStep('areaPerDevice',[Vertex,Pipe],

{ip -> _().ifThenElse{ip == null}

{it.has('Type','Device').has('IP',it.IP).in('has')}

{it.has('Type','Device').has('IP',ip).in('has')}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.areaPerUnit("Temperature")

{

 "results": [

 {

 "Name": "Lab Grad-1",

 "Type": "Area",

 "_id": 31744,

 "_type": "vertex"

 },

 {

 "Name": "Rectory",

 "Type": "Area",

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 17 of 33 Submission date: 31 October 2014

 "_id": 30976,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1247.4387

}

device(ip)

Arguments:

ip: String, null

Return:

Return a device if the ip is specified or return a list of all devices if none ip is passed.

Definition:

Gremlin.defineStep('device',[Vertex,Pipe],

{ip -> _().ifThenElse{ip == null}

{it.has('Type','Device')}

{it.has('Type','Device').has('IP',ip)}})

Examples for a graph g:

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.device("192.168.0.1")

{

 "results": [

 {

 "OptionalParameters": {

 "Reference": "XBee Sensor"

 },

 "Type": "Device",

 "IP": "192.168.0.1",

 "_id": 33792,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 985.8967

}

devicePerArea(name)

Arguments:

name: String

Return:

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 18 of 33 Submission date: 31 October 2014

Return a list of devices which is in the area.

Definition:

Gremlin.defineStep('devicePerArea',[Vertex,Pipe],

{name ->_().ifThenElse{name == null}

{it.has('Type','Area').has('Name',it.Name).out.has('Type','Device')}

{it.has('Type','Area').has('Name',name).as('x').out().loop('x')

{it.object.Type != "Device"}.map}})

Examples for a graph g:

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.devicePerArea("Theater

UFPE")

{

 "results": [

 {

 "OptionalParameters": {

 "Reference": "XBee Sensor"

 },

 "Type": "Device",

 "IP": "192.168.0.6"

 },

 {

 "OptionalParameters": {

 "Reference": "SmartPlug"

 },

 "Type": "Device",

 "IP": "192.168.0.7"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1288.0328

}

devicePerUnit(type)

Arguments:

type: String

Return:

Return a list of devices which are measuring the unit passed

Definition:

Gremlin.defineStep('devicePerUnit',[Vertex,Pipe],

{unit -> _().ifThenElse{unit == null}

{it.has('Type',it.Type).out}

{it.has('Type',unit).out}})

Examples for a graph g:

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 19 of 33 Submission date: 31 October 2014

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.devicePerUnit("Temperature")

{

 "results": [

 {

 "OptionalParameters": {

 "Reference": "XBee Sensor"

 },

 "Type": "Device",

 "IP": "192.168.0.1",

 "_id": 33792,

 "_type": "vertex"

 },

 {

 "OptionalParameters": {

 "Reference": "AirConditioner01"

 },

 "Type": "Device",

 "IP": "192.168.0.3",

 "_id": 34304,

 "_type": "vertex"

 },

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1303.297

}

measurementFromArea(name)

Arguments:

name: String, null

Return:

The return is all measurements from that area

Definition:

Gremlin.defineStep('measurementFromArea',[Vertex,Pipe],

{name ->_().ifThenElse{name == null}

{it.has('Type','Area').has('Name',it.Name).out.has('Type','Device'). out('was measured')}

{it.has('Type','Area').has('Name',name).out.has('Type','Device').out('was measured')}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromArea(“Theater UFPE”)

{

 "results": [

 {

 "Type": "Measurement",

 "Power": 110,

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromArea
http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromArea
http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromArea

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 20 of 33 Submission date: 31 October 2014

 "Humidity": 22,

 "_id": 39936,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 910.292201

}

measurementFromDevice(ip)

Arguments:

ip: String

Return:

The return is the last measurement from that ip

Definition:

Gremlin.defineStep('measurementFromDevice',[Vertex,Pipe],

{ip ->_().ifThenElse{ip == null}

{it.has('Type','Device').has('IP',it.IP).out('was measured')}

{it.has('Type','Device').has('IP',ip) .out('was measured')}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromDevice("192.168.0.1")

{

 "results": [

 {

 "Type": "Measurement",

 "Temperature": 10,

 "Luminosity": 1290,

 "_id": 38912,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 954.5627

}

// Example where you take the in going edge of the last measurement

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromDevice("192.168.0.1").inE

()

{

 "results": [

 {

 "timestamp": "Mon Nov 10 18:29:05 UTC 2014",

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 21 of 33 Submission date: 31 October 2014

 "_id": "nnk-q2o-hed-u0w",

 "_type": "edge",

 "_outV": 33792,

 "_inV": 38912,

 "_label": "was measured"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1336.9622

}

 measurementFromUnit(type)

Arguments:

type: String

Return:

The return is all measurements of that unit type

Definition:

Gremlin.defineStep('measurementFromUnit',[Vertex,Pipe],

{type ->_().ifThenElse{type == null}

{it.has('Type',it.Type).devicePerUnit.measurementFromDevice}

{it.has('Type',type).devicePerUnit.measurementFromDevice}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.measurementFromUnit("Temperature")

{

 "results": [

 {

 "Type": "Measurement",

 "Temperature": 10,

 "Luminosity": 1290,

 "_id": 38912,

 "_type": "vertex"

 },

 {

 "Type": "Measurement",

 "Temperature": 25,

 "_id": 39424,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1316.4512

}

unitPerDevice(ip)

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 22 of 33 Submission date: 31 October 2014

Arguments:

ip: String

Return:

Show all units measured by the device specified on ip.

Definition:

Gremlin.defineStep('unitPerDevice',[Vertex,Pipe],

{ip -> _().ifThenElse{ip == null}

{it.has('Type','Device').has('IP',it.IP).in('interacts')}

{it.has('Type','Device').has('IP',ip).in('interacts')}})

Examples for a graph g:

http://impress-storage-

ip:8182/graphs/graph/tp/gremlin?script=g.V.unitPerDevice("192.168.0.1")

{

 "results": [

 {

 "Type": "Temperature",

 "Unit": "Celsius",

 "_id": 32000,

 "_type": "vertex"

 },

 {

 "Type": "Luminosity",

 "Unit": "Lumens",

 "_id": 32768,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1386.8027

}

unitPerArea(name)

Arguments:

name: String

Return:

Show all units measured on the area which name is given.

Definition:

Gremlin.defineStep('unitPerArea',[Vertex,Pipe],

{name -> _().ifThenElse{name == null}

{it.has('Type','Area').has('Name',it.Name).devicePerArea.unitPerDevice.unique()}

{it.has('Type','Area').has('Name',name).devicePerArea.unitPerDevice.unique()}})

Examples for a graph g:

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 23 of 33 Submission date: 31 October 2014

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.unitPerArea("Theater

UFPE")

{

 "results": [

 {

 "Type": "Humidity",

 "Unit": "UR",

 "_id": 32256,

 "_type": "vertex"

 },

 {

 "Type": "Power",

 "Unit": "Watts",

 "_id": 32512,

 "_type": "vertex"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 1236.0896

}

setOptionalParameters(parameters)

Arguments:

parameters: Map

Return:

Adds optional parameters to a vertex. Can be used combined with “area” and “device” steps.

Definition:

Gremlin.defineStep('setOptionalParameters',[Vertex,Pipe],

{parameters -> _().ifThenElse{it.OptionalParameters != null}

{it.OptionalParameters += parameters; g.commit()}

{it.OptionalParameters = parameters; g.commit()}})

Examples for a graph g:

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=g.V.area("Lab Grad-

1").setOptionalParameters(["Description":"CS Laboratory"])

createDevice(deviceIp, areaContained, category, measurementTypes,

optionalParameters)

Arguments:

deviceIp, areaContained, category: String

measurementTypes: List<type>

optionalParameters: Map<type>

Return:

True, if the device was sucessfull added, or False if an error ocurred.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 24 of 33 Submission date: 31 October 2014

Definition:

def createDevice(deviceIp, areaContained, category, measurementTypes,

optionalParameters=[]){

 g = rexster.getGraph("graph");

 devProps = [Type:'Device'];

 devProps['IP'] = deviceIp;

 device = g.addVertex(devProps);

 for(type in measurementTypes){

 vertex = g.V.has("Type",type).next();

 g.addEdge(vertex,device,'interacts');

 }

 if(optionalParameters){

 device["OptionalParameters"] = optionalParameters;

 }

 categoryVertex = g.V.category(category).next();

 g.addEdge(categoryVertex,device,"comprehends");

 area = g.V.area(areaContained).next();

 g.addEdge(area, device, 'has');

 g.commit();

}

Examples:

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=

createDevice("192.168.0.1","Lab Grad-

1","Sensoring",["Temperature","Luminosity"],["Reference":"XBee Sensor"])

 createArea(name, areaContained, optionalParameters)

Arguments:

name, areaContained: String

aditionalParameters: Map <type>

Return:

True, if it was successfully added, or False if an error occurred.

Definition:

def createArea(name, areaContained=""){

 g = rexster.getGraph("graph");

 area = g.addVertex([Type:'Area',Name:name]);

 if(areaContained.length() > 0){

 g.addEdge(area, g.V.area(areaContained).next(), "has");

 }

 g.commit();

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 25 of 33 Submission date: 31 October 2014

}

def createArea(name, String areaContained, optionalParameters=[]){

 g = rexster.getGraph("graph");

 area = g.addVertex([Type:'Area',Name:name]);

 if(areaContained.length() > 0){

 g.addEdge(area, g.V.area(areaContained).next(), "has");

 }

 if(optionalParameters){

 area["OptionalParameters"] = optionalParameters;

 }

 g.commit();

}

def createArea(name, Map optionalParameters){

 g = rexster.getGraph("graph");

 area = g.addVertex([Type:'Area',Name:name]);

 if(optionalParameters){

 area["OptionalParameters"] = optionalParameters;

 }

 g.commit();

}

Examples:

// A root area, with an optional parameter.

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=

createArea("UFPE", ["Description":"University", "UF":"Pernambuco"])

// An area named “CIN” contained in area “UFPE”

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=

createArea("CIN", "UFPE")

// An area named “Theater UFPE”, contained in area “UFPE”, with an optional parameter

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script= createArea("Theater UFPE",

"UFPE" ,["Description":"Facility where the UFPE Demo takes place"])

// just a root area named Room D003

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=

createArea(“Room D003”)

measurementsPerTicksAndTimestamp(deviceNetworkId, numTicks, beginTimestamp,

endTimestamp)

Arguments:

deviceNetworkId: String

numTicks: Integer

Return:

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 26 of 33 Submission date: 31 October 2014

Returns a set of means of measurements values between two dates given (beginTimestamp

and endTimestamp). The number of means is defined by numTicks, i.e, the number of fusions of

measurements values in the timestamps interval.

Definition:

def measurementsPerTicksAndTimestamp(deviceNetworkId, numTicks, beginTimestamp,

endTimestamp){

 g = rexster.getGraph("graph");

 firstVertex = g.V.measurementFromDevice(deviceNetworkId)

 .as('x').out("was measured")

 .loop('x'){

 new Date(it.object.outE.map.next()

 .timestamp.toString())>=(new Date(endTimestamp))

 }.next()

 path = firstVertex.as('x').out("was measured")

 .loop('x'){ t

 new Date(it.object.outE.map.next()

 .timestamp.toString())>=(new Date(beginTimestamp))

 }.path.next();

 pathList=[];

 pathJumps=numTicks;

 numVertices = 0;

 for(vertex in path){

 numVertices += 1;

 }

 numSamples = (numVertices/numTicks).toInteger();

 pathList=[];

 newMeasurement = firstVertex.map.next();

 newMeasurement = resetMeasurement(newMeasurement);

 node=0;

 for(i=0; i<numTicks ;i++){

 for(j=0; j<numSamples ;j++){

 newMeasurement = incMeasurement(newMeasurement,path[node]);

 node++;

 }

 newMeasurement = meanMeasurement(newMeasurement,numSamples);

 pathList+=newMeasurement.clone()

 newMeasurement = resetMeasurement(newMeasurement);

 }

 return pathList

}

Examples for a graph g:

// between beginTimestamp and endTimestamp there are 4 measurements

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 27 of 33 Submission date: 31 October 2014

// and numTicks is 4, so 4 unmodified measurements are returned

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script=

measurementsPerTicksAndTimestamp("192.168.0.1",4,

 "Mon Nov 10 18:28:57 UTC 2014",

 "Mon Nov 10 18:29:02 UTC 2014")

{

 "results": [

 {

 "Luminosity": 1270,

 "Temperature": 13,

 "Type": "Measurement"

 },

 {

 "Luminosity": 1270,

 "Temperature": 15,

 "Type": "Measurement"

 },

 {

 "Luminosity": 1270,

 "Temperature": 17,

 "Type": "Measurement"

 },

 {

 "Luminosity": 1270,

 "Temperature": 19,

 "Type": "Measurement"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 535.4372

}

// Now numTicks is 2, so two measurements will be returned, the first with the

// mean of the two first measurements, and the second with the mean of

// measurements 3 and 4.

http://impress-storage-ip:8182/graphs/graph/tp/gremlin?script

=measurementsPerTicksAndTimestamp("192.168.0.1",2,

 "Mon Nov 10 18:28:57 UTC 2014",

 "Mon Nov 10 18:29:02 UTC 2014")

{

 "results": [

 {

 "Luminosity": 1270,

 "Temperature": 14,

 "Type": "Measurement"

 },

 {

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 28 of 33 Submission date: 31 October 2014

 "Luminosity": 1270,

 "Temperature": 18,

 "Type": "Measurement"

 }

],

 "success": true,

 "version": "2.5.0",

 "queryTime": 511.6438

}

3.1.1 Impress' DSL Steps

Steps can be used in two different notations:

Postfix notation:

g.V.data.step

InFix notation:

g.V.step(data)

The returned value is the same in both cases. Therefore, a user can aggregate several steps in a

single Gremlim query.

For example:

g.V.data.step1.step2(somedata).step3.step4……

The "g.V" indicates that all the database, after further composition of steps the set of data will be

restricted due to previous steps.

Examples:

g.V -> All database

g.V.step1 -> Sub-set of database after step1

g.V.step1.step2 -> Sub-set of databse after step1 and step2

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 29 of 33 Submission date: 31 October 2014

Step Description Return

area (String name)

Returns an area, if a name is specified,

or a list of all areas, if no name is

passed as argument.

A set of areas.

areaPerDevice (String ip)

Returns an area containing the device

with the specified IP.

A set of areas.

areaPerUnit (String unit)

Returns a list of area that contains the

unit specified measured by at least one

device.

A set of areas.

areaFromArea (String name)
Returns a list of areas belonging to an

specific area.

A set of areas.

category (String name) Returns a category, if a name is

specified, or a list of all devices, if no

name is passed as argument.

A set of categories.

device (String ip) Returns a device, if an IP is specified,

or a list of all devices, if no IP is passed

as argument.

A set of devices.

devicePerArea (String name) Return a list of devices which is in the

area.

A set of devices.

devicePerUnit (String type)

Returns a list of devices which are

measuring the specified unit (e.g.

temperature, light intensity and etc).

A set of devices.

devicePerCategory (String name) Returns a list of device with a category

in comnext(e.g. illumination, HVAC).

A set of devices.

measurementFromArea (String name) Returns all measurements made by

devices in the specified area.

A set of measurements.

measurementFromDevice (String ip) Returns all measurements from a

device with the specified IP.

A set of measurements.

measurementFromUnit (String type) Returns all measurements containing

the specified unit type (e.g.

temperature, light intensity and etc).

A set of measurements.

 unitPerDevice (String ip) Show all units (e.g. temperature, light

intensity and etc) measured by the

device with the specified IP.

A set of units.

 unitPerArea (String name) Returns all units (e.g. temperature, light

intensity and etc) measured on the

specified area.

A set of units.

setOptionalParameters (Map parameters) Add optional parameters to an area or a Null.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 30 of 33 Submission date: 31 October 2014

device. A map of key(attribute

name)=value(attribute value)

3.1.2 Gremlim's Useful Steps

 The steps below, are part of Gremlim's core steps, but we decided to cite them due to their
usefulness.

Step Description Return

map Show all the property and values from a node.

Example:

data.map

A description of the node.

next() Get the next element from a set.

Example:

set.next().next().next()

Will return the 3rd element from set.

The next node of the

container.

property* Access the property value from some node or edge.

Example:

data.property*

Will show the property* from the data node.

data.property* = new_value

Will update property* with new_value..

Null.

remove() Remove an element from the database.

Example:

data.remove()

Will remove data node.

 Null.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 31 of 33 Submission date: 31 October 2014

3.1.3 Impress' DSL Functions

Different from steps, functions cannot be aggregated in a single call. In other words, prefix and

postfix notations cannot be used.

For example:

function(parameter1, parameter2…)

Function Description Result

createDevice (String deviceIp,

String areaContained,

List<String>

measurementTypes, Map

optional Parameters)

Creates and saves, on the database,

a new device, an edge between the

new device and its area, the types of

measurements it can perform and

optional parameters for unique.

The representation of a edge, if the

device was successfully created, or an

error message.

createArea (String name, String

areaContained, Map

optionalParameters)

Creates and saves, on the database, a

new area, an edge between the new

area and area which it is part of. Also

additional parameters for specific area

characteristics.

The representation of a edge, if the

device was successfully created, or an

error message.

createCategory (String name) Creates and saves a category. A vertex with type category to classify

devices.

createMeasurement(deviceIp,

values)

Creates a measurement vertex for a

device identified by deviceIp with

values determined by the values

parameter.

A vertex containing values passed as

parameters with an edge from the

device identified by deviceIp and an

edge to the previous measurement.

createMeasurementVariable

(variableName, unitName)

Creates a new vertex of measurement

variable type. When a device is created

with an specific measurement type,

the measurement type vertex created

with the same name is linked to this

device.

A vertex with a measurement type

name, e.g. temperature, and

measurement unit name, e.g. Celsius.

measurementsPerTicks

(deviceNetworkId, numTicks)

Returns the last measurements given

the number of last measurements

(numTicks).

A set of measurements. Measurement

being a Map of measurement types and

measurement values.

measurementsPerTicksAndTime

stamp (deviceNetworkId,

numTicks, beginTimestamp,

endTimestamp)

Returns a set of means of

measurements values between two

dates given (beginTimestamp and

endTimestamp). The number of means

is defined by numTicks, i.e, the

number of fusions of measurements

values in the timestamps interval.

A set of means of measurements values.

Measurement being a Map of

measurement types and measurement

values.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 32 of 33 Submission date: 31 October 2014

4. Initial Performance Evaluation

To evaluate the performance of our proposed architecture, we populated an instance of Titan with

the data model proposed in Figure 2, via a Rexter Server. This is important since this evaluation can

be envisaged as a real performance evaluation of the proposed architecture, not just an

indiscriminate stress test. Especially, because query times depends on the data model used. We

conducted the initial experiments using the following number of nodes:

 Devices: 30

 Measurement Histories per device: 500

 Areas: 7

 Measurement Variables: 4 (i.e. energy consumption, temperature, humidity and light

intensity)

As a result, this experiment generated a total of 120.252 vertices and 120.966 edges in our Titan

instance. Given the populated database, we performed 10,000 random automated queries, in order

to evaluate query performance for our model. Both the populate and query performance steps were

executed by two Python scripts, developed for this matter. These scripts were executed on an Intel

Core i3 - 2100 CPU @ 3.10 GHz with two GB of Ram. The query performance benchmark took 200

seconds to finish, with an average of 20 milliseconds per query. It is also noteworthy that 75% of

the queries run in less than this average time, as depicted in Figure 4.

Figure 4: Histogram of query time per query number.

In the end, as previously said, the performance benchmark had only one instance of Titan as part of it.

Obviously, in real case scenarios, that would hardly be the case. The major advantage of NoSQL

technologies, in general, is exactly the capability of distributing the workload with all the servers running a

database instance.

IMPReSS D5.1.1 Initial Data Analysis & Knowledge Repository Technical Specifications & Guidelines

Document version: 1.2 Page 33 of 33 Submission date: 31 October 2014

References

[1] Jayavardhana G., Rajkumar B., Slaven M., Marimuthu P. Internet of Things (IoT): A vision, architectural

elements, and future directions. Future Generation Comp. Syst. 29(7): 1645-1660 (2013).

[2] IMPRESS (Intelligent System Development Platform for Intelligent and Sustainable Society) project,

Description of Work. EU‐Brazil research and development Cooperation

[3] Silberschartz, A., Korth, H.F., and Sudarshan, S. Data models. ACM Computing Surveys, 28, 1, 105-108.

[4] Levene, M., Poulovassilis, A. The hypernode model and its associated query language, Proceedings of the

fifth Jerusalem conference on Information technology, p.520-530, 1990.

[5] Titan – Distributed Graph Database. http://thinkaurelius.github.io/titan/

[6] Adam Jacobs, The Pathologies of Big Data, 1010data Inc., 2009.

https://queue.acm.org/detail.cfm?id=1563874

[7] Faunus – Graph Analytics Engine. http://thinkaurelius.github.io/faunus/

[8] Gremlin – Graph Database Language. https://github.com/tinkerpop/gremlin

[9] Rexster Graph Server. https://github.com/thinkaurelius/titan/wiki/Rexster-Graph-Server

[10] Groovy. http://groovy.codehaus.org/

[11] Neo4J. http://www.neo4j.org/

[12] OrientDB. http://www.orientechnologies.com/orientdb/

[13] SparkSee. http://www.sparsity-technologies.com/

[14] Tinkerpop. http://www.tinkerpop.com/

[15] Blueprints. https://github.com/tinkerpop/blueprints/wiki

[16] Hadoop. https://hadoop.apache.org/

[17] SPARQL. http://www.w3.org/TR/rdf-sparql-query/

[18] PyBulbs. http://bulbflow.com/overview/

[19] Hbase. https://hbase.apache.org/

[20] Oracle Berkeley DB. http://www.oracle.com/technetwork/database/database-

technologies/berkeleydb/overview/index.html

[21] Akiban Persistit. http://www.akiban.com/

https://queue.acm.org/detail.cfm?id=1563874

