
(FP7 614100)

D8.2 Application Architecture for Energy Management

Date 14 May 2014 – Version 1.3

Document version: 1.3 Submission date: 14 May 2014

Published by the Impress Consortium

Dissemination Level: Public/Restricted/Confidential

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Published by the Impress Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Impress D8.2 Application Architecture for Energy Management

Document control page

Document file: IMPRESS Deliverable D8.2 v1.3.odt
Document version: 1.3
Document owner: Djamel Sadok (UFPE)

Work package: WP8 – Platform Evaluation and Application Development

Task: T8.2 Redesign of The Application Architecture
Deliverable type: R

Document status: [x] approved by the document owner for internal review
[x] approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Lucas Lira Gomes (UFPE) 03/04/2014 First draft.
0.2 Djamel Sadok (UFPE) 21/04/2014 First revision.
0.3 Eduardo Souto (UFAM) 22/04/2014 Second revision.
0.4 Thiago Rocha (UFAM) 25/04/2014 Third revision.
0.5 Lucas Lira Gomes (UFPE) 30/04/2014 Addressed internal reviewers' concerns.
1.0 Lucas Lira Gomes (UFPE) 29/04/2014 Document sent for internal review.
1.1 Lucas Lira Gomes (UFPE) 30/04/2014 Addressed internal reviewers' concerns.
1.2 Thiago Rocha (UFAM) 08/05/2014 Fourth revision.
1.3 Lucas Lira Gomes (UFPE) 14/05/2014 Added details regarding physical devices used

in the demo, their deployment, etc.

Internal review history:

Reviewed by Date Summary of comments

Ferry Pramudianto (FIT) 02/06/2014 Accepted
Peter Kool (CNET) 02/06/2014 Accepted

Document version: 1.3 Page 2 of 27 Submission date: 14 May 2014

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

Impress D8.2 Application Architecture for Energy Management

Index:

Table of Contents
1. Executive summary..4

2. Introduction...5

3. Impress Platform Overview...6

4. Impress Platform Architecture...8

5. UFPE's Demo Architecture...10
5.1 UFPE's Monitoring Scope...10
5.2 Monitored & Controlled Parameters..13
5.3 Monitored & Controlled Devices..13
5.4 Renewable Energy Considerations..14

6. Impress Application Architecture...15

7. Guiding Principles for the Impress Platform Public API...17
7.1 API Security Policy...17
7.2 Schema..17
7.3 URIs...17
7.4 Client Errors..18
7.5 HTTP Verbs...19

8. REST API Documentation...20
8.1 Context Manager..20
8.2 Data Analysis & Support System..20

8.2.1 Predict Device's Measurement Variables..20
8.2.2 Parameters..20
8.2.3 Response..21

8.3 Data, Policy, Knowledge Storage..21
8.4 Monitoring and Control...21

8.4.1 Discovering all devices' states..21
8.4.2 Response..21
8.4.3 Discovering a single device's state..22
8.4.4 Response..22
8.4.5 Editing a single device's state..22
8.4.6 Parameters..22
8.4.7 Response..22

8.5 Sensor and Data Fusion..22
8.6 Service Proxy..23

9. Conclusions..24

10. References...25

Document version: 1.3 Page 3 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

1. Executive summary

This deliverable describes the initial proposal for the API of all modules which are part of the
Impress Platform. These APIs will then be implemented and updated by other work packages, so
that applications can request/provide data to the Impress Platform. Alternatively, we will refer to this
set of APIs as the Impress Platform public API, since it will be exposed to external applications. In
addition, it is important to mention that this initial specification is based on the current needs of the
proposed application to be used in the final demo, described in D8.1. As the application, also de-
scribed in D8.1, and Impress Platform's modules development progresses, this document should get
updated in order to reflect all necessary changes in terms of actual implementation. To this extent, it
is mandatory for every partner to maintain the others aware of any change in this specification, ide-
ally by updating this document, so that the integration between the envisioned application in D8.1
and the Impress Platform can be carried out in a straightforward way.

Additionally, the architectural design of both the application described in D8.1 and the Impress Plat-
form, will be discussed in more details, in terms of deployment, network and software integration for
UFPE and Teatro Amazonas use cases.

To achieve that, we organise this deliverable according to the following. Firstly, section 2 contains
additional information on the aim and scope of this deliverable. Section 3, gives a brief overview of
the Impress Platform. In section 4, Impress Platform architecture will be discussed in terms of archi-
tectural decisions and how these fit the demo's energy use case without compromising the Impress
Platform appeal for generic IoT scenarios. Section 5 covers the parameters that will be monitored &
controlled by the Impress Platform, regarding physical devices and third-party systems that will be
installed in UFPE. Also, topics such as types of monitored rooms, their estimated number, renewable
energy sources usage, etc, will be mentioned. Section 6 provides a discussion about how the appli-
cation in D8.1 is expected to work on the section 4 architectural premises. Section 7 contains the
guiding principles that were adopted when specifying the public APIs, so that future updates to the
public APIs can be consistent with prior versions. Section 8 contains a detailed specification of the
Impress Platform public API. Finally, in Section 9, we provide our summary and conclusion.

Document version: 1.3 Page 4 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

2. Introduction

To allow third-party applications to be able to interact with the Impress Platform, hosted whether in
a cloud service or locally, a public API specification is necessary to show how requests can be for-
matted and what to expect as the outcome of a given API call. In that sense, this deliverable aims to
provide an initial specification of the Impress Platform public API and to characterize how the API is
related to both the application and the Impress Platform architectural design. This specification is
guided by the current needs of the application, described in deliverable 8.1. However, this public API
specification is yet not sufficiently extensive, as the architecture of both the application and the
Impress Platform evolves, extra features that were not forethought can turn to be indispensable or
requirements can change to the point of making certain APIs' calls useless or redundant. Thus, these
modifications also need documenting. Ideally, this deliverable must evolve to ensure that partners
keep track of how they can use the Impress Platform on their external applications.

Additionally, this constant effort to update this specification is highly important and should be a pri-
ority for any work package that finds out that modifications in this specification are required. Work
package 8, in charge of the application development, will use this document as its primary reference
to guide the interaction with the Impress Platform's modules. Divergences between this document
and the real implementation of the Impress Platform public API can slow the integration with the ap-
plication and must, therefore, be avoided.

Finally, minor architectural redesigns were proposed for both the application described in D8.1 and
the Impress Platform. This was a result of our better understanding of the implications of the
Impress Platform architecture's former vision, proposed in the DOW, when it comes to deployment,
network and software integration. Despite that, we also address how to guarantee the extensibility
of the Impress Platform, when it comes to interfacing new hardware besides our original scenario
with energy-oriented resources (i.e. distributed energy resources, energy storage, energy metering
and other sensors and actuators). Thus, permitting Impress Platform to still have appeal for non-en-
ergy scenarios.

Document version: 1.3 Page 5 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

3. Impress Platform Overview

The IMPRESS platform can be seen as a software platform in the cloud designed to manage ubiqui-
tous sensor data. It was engineered to provide a set of tools to help application developers to build
and manage connected smart devices and applications based on connected things.

Figure 1 provides a complete overview of the IMPRESS platform several modules.

Figure 1: IMPRESS Platform Overview.

For every module within the Impress platform, an API should be provided for an external application
to access it. This set of public APIs are depicted as a single block called 'APIs' in Figure 1, but this
does not have to be a single software component. Ideally, every module will implement their own
API as a part of the module itself, with that the application developers know the endpoint of every
module. Impress platform's modules can be used as black boxes via the public API, hiding all the
complexities of the provided features from application developers.

However, to be consistent, all Impress modules should use the same type of architectural model for
their APIs. Requiring application developers to use SOAP [6] for some modules, for instance, and
REST for others, would not be a good approach in terms of consistency. Hence, we endorse the
usage of Representational State Transfer (REST). REST is a term coined by Roy Fielding in his Ph.D.
dissertation [1] to describe an architecture style of networked systems, being a defacto standard for
web services in general.

Additionally, REST architectures are simple, as the whole concept is based on the core of the web,
namely the HTTP protocol and its concepts of Resources and URIs. Despite that, there is a wide set
of mature frameworks for developing REST solutions in most mainstream programming languages.

Document version: 1.3 Page 6 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Note that for internal communication, among Impress Platform modules, some of these REST APIs
aimed for external applications can turn to be useful. If not, modules can also use LinkSmart
Middleware, formerly known as Hydra Middleware [8], to share data internally. These two
approaches alone, a REST API and LinkSmart Middleware, are sufficient to address Impress Platform
needs in terms of distributed software integration for the scope of this project.

Document version: 1.3 Page 7 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

4. Impress Platform Architecture

A preliminary version of the Impress Platform architecture was shown in Figure 1 and it will be
redesigned as part of this task. The architecture, depicted there, shows an example of exploitation
of the development platform for general IoT applications. In our energy scenario for the demo, this
architecture is still suitable as, for instance, energy meters can be abstracted as sensors and energy
sources can be controlled via actuators. In fact, changes, in terms of software, due to different
scenarios is just a matter of implementing proxies, developed as part of WP3, for interfacing with
energy-oriented resources (i.e. distributed energy resources, energy storage, energy metering and
other sensors and actuators) via the Resource Adaptation Interface (RAI) depicted in Figure 1. In
order to add support for other devices (i.e. meters, actuators, etc) in the Impress Platform, a
developer would just have to implement a new proxy.

Figure 2: IMPRESS Platform Architecture.

Document version: 1.3 Page 8 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

As a result of that, the Impress Platform maintains a modular design, avoiding embedding scenario
specific logic in their core modules. This design decision enforces reusability; as proxies, depicted in
Figure 2, can be shared and used in a plug-and-play manner; allows extensibility; since new proxies
can be developed independently as components outside the Impress Platform; therefore permitting
heterogeneous devices to cooperate in a transparent way.

The only requirement, however, is for these proxies to be able to communicate with the Service
Proxy in the Impress Platform, via the Resource Adaptation Interface (RAI) API. So that the Impress
Platform can abstract its internal semantics and business logic from devices' technical details. In this
case, proxies main purpose would be just translating the Resource Adaptation Interface (RAI) mes-
sages into specific actions for these devices (e.g. turn on/off an appliance, etc) and formatting data
gathered from devices, in order to send it to the Impress Platform. This sense and actuate cycle is
generic enough to permit a broad set of use cases in terms of supporting third parties systems.

Monitoring and control modules, leveraging the work done in WP4, should not be changed also to
support a given scenario, as they are part of the core modules of the Impress Platform. The key
point here is that the Service Proxy module, which is part of WP3, should be able to provide re-
sources meta-data that are generic enough for the Impress Platform to treat different devices, inter-
facing Impress Platform via the Resource Adaptation Interface (RAI), as generic sensors and actua-
tors, despite hardware vendors' specific details. For data fusion and data analysis modules, likewise,
nothing should change. Algorithms in these areas, whether for prediction or classification tasks, are
well established and should be available regardless the scenario, depending on the applications de-
velopers to understand what algorithm fits better their use case in lieu of defining a one-size-fits-all
model for carrying out prediction and classification tasks in the energy scenario.

Document version: 1.3 Page 9 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

5. UFPE's Demo Architecture

Aspects regarding physical devices and third-party systems deployment at UFPE will be covered in
this section, so that partners can get a grasp of how to proper conceive their modules to facilitate
software/hardware integration.

5.1 UFPE's Monitoring Scope

The Federal University of Pernambuco (UFPE) is a public university, established in 1946. The
university has three campuses: Recife, Vitória de Santo Antão and Caruaru. For the scope of this
project, only UFPE's main campus in Recife, which has 10 departments in 149 hectares, will be
considered.

Despite that, it is important to mention that GPRT, which is a two-floor building occupying a total of
380 m² within UFPE, will be part of the demo. GPRT's floor plans are depicted in both Figure 3 and
4, one for each floor. Additionally, one department, among the ten in Recife's Campus, is envisaged
to take part into the demo too, but there was no formal request yet, to those in charge of those
departments, so that experiments with Impress Platform could be extended to them. This issue,
however, will be addressed in the subsequent months. Note that, due to Recife's campus extensive
area, it would not be sensible to propose more than one department, since the deployment and
hardware cost would be too high.

Despite that, GPRT entails thirteen ambients, from meeting rooms to offices. All those populated
mainly with computers (e.g. PCs, notebooks, servers, etc) and individual split air conditioners. Other
appliances including printers, a microwave, a compact refrigerator, TVs, networking devices (i.e.
routers, switches, etc), are also present.

As for other departments, they are mainly composed of classrooms, libraries, bathrooms, teachers'
rooms, meeting rooms and computer labs. In terms of electronic equipments, there are HVAC
(heating, ventilation, and air conditioning) systems, computers (e.g. PCs, notebooks, servers, etc),
TVs, video projectors, printers, networking devices (i.e. routers, switches, etc), just to name a few.
Therefore, in essence, there is not much difference from GPRT to other UFPE's departments, in
terms of electronics that could be monitored and controlled by the Impress Platform.

Document version: 1.3 Page 10 of 27 Submission date: 14 May 2014

https://en.wikipedia.org/wiki/Caruaru
https://en.wikipedia.org/wiki/Recife

Impress D8.2 Application Architecture for Energy Management

Document version: 1.3 Page 11 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Document version: 1.3 Page 12 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Document version: 1.3 Page 13 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Figure 3: GPRT's ground floor floor plan.

Figure 4: GPRT's first floor floor plan.

5.2 Monitored & Controlled Parameters

For achieving the scenario based descriptions described in D8.1, only energy consumption have to
be monitored. Likewise, Impress Platform should be also able to turn on/off devices remotely.
Despite that, as other applications can be made for performing if-this-than-that (IFTT) activities, as
described in next section, the following parameters were judged to be also useful and will, therefore,
be provided:

1. Temperature

2. Light Intensity

3. Humidity

4. Presence

5.3 Monitored & Controlled Devices

The main point is to have smart energy sockets that are able to interrupt and measure remotely
energy consumption of appliances connected to them. Similarly, smart energy switches would
provide the same functionality, but for lamps. Therefore, ideally, all energy socket and light switch
within GPRT will be replaced by a smart equivalent. In this sense, there are in-wall and external
plug/extension cord solutions. In-wall solutions are more intrusive, as current energy sockets will
have to be replaced by them but, on the other hand, they are more aesthetically pleasing as there is
no apparent difference from normal energy sockets. As for external plugs/extension cord, they are
more noticeable, but have the advantage of not requiring any infrastructural change. For UFPE's
demo, we endorse the use of external plugs, as it will be easier to prototype and deploy the demo.
Regarding light switches, there is no option though, as light switches cannot be plugged like in the
energy socket case.

In terms of external plugs solutions, there are several alternatives available for purchasing, l ike
Circle's family from Plugwise [9], WeMo Insight Switch from Belkin [10], Xbee Smart Plug from Digi
[11], DSP-W215 Wi-Fi Smart Plug from D-Link [12], SP-1101WSmart Plug Switch from Edimax [13],
SmartPower Outlet from SmartThings, etc. Most of them, however, does not provide an API for
third-part applications, like a proxy or so, to monitor and control them. Therefore, solutions that
provide software development kits (SDK) to interoperate with their systems, are a must for our use
case, as reverse engineering proprietary application protocols is out of the question. If purchasing
ready-to-use smart energy sockets and light switches turns out to be the best option, which of them,
however, is an open issue that will be addressed in the following months.

Those smart devices will then feed Impress Platform with periodic reports, allowing Impress Platform
to provide functionalities as cited in sections 4 and 6. In order to provide extra measurements (e.g.
temperature, light intensity, humidity and presence), like mentioned in subsection 5.2, WSAN motes
with such capabilities will be deployed in a per room manner. In this sense, a General Sensors Proxy,
as depicted in Figure 5, is needed to forward WSAN Motes messages to the Impress cloud, via the
Resources Adaptation Interface (RAI), and vice versa. Likewise, there will be also a proxy for smart
energy sockets and light switches, named Energy Sockets Proxy and Light Switches Proxy
respectively.

For other department, a smaller area for experimentation may have to be specified due to the
typical size of departments, as the cost of replacing light switches entirely and purchasing external
energy socket plugs can be prohibitive.

This approach, of having smart energy sockets/light switches that are able to interrupt and measure
remotely the energy consumption of appliances connected to them, would permit a real-world usage
of the Impress Platform in terms of energy efficiency automation.

Document version: 1.3 Page 14 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Document version: 1.3 Page 15 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

Figure 5: Physical devices integration with the Impress Platform via the Resource Adaptation Interface (RAI).

Additionally, some technical complexities will have to be addressed due to the flexibility of Impress
Platform, as there is no way to know in advance which appliance is plugged in which smart energy
socket. Therefore, for electronics that are usually deployed in a static manner (e.g. PCs,
refrigerators, TVs, etc), Impress Platform should provide some way to map an energy socket with a
given appliance in a logical level. This logical mapping, however, is not suitable for every usage, as
is common to have spare energy sockets for alternating between devices such as chargers, research
equipment and anything that does not stays plugged to an energy socket at all times.

5.4 Renewable Energy Considerations

For this aspect, solar energy panels will be installed at GPRT. Therefore, Impress Platform should be
able to monitor and control energy sources too. Consequently, charge controllers and inverters will
have to be interfaced by a proxy as stated in section 4, which in this case is the Distributed Energy
Source Proxy depicted in Figure 5. Also, a battery storage system, for alternating current (AC), will
be deployed and integrated with a charge controller and inverter, therefore providing a backup
source in the face of energy outages.

Document version: 1.3 Page 16 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

6. Impress Application Architecture

During the application development a software architectural pattern called MVC (Model View
Controller) will be used. MVC divides a given software application into three interconnected parts
and it isolates business logic from the user interface. Using MVC the Model represents the
information of the application and the business rules used to manipulate the data, the View
corresponds to elements of the user interface and the Controller manages the communication
between the Model and the View. In the case of the application that will be developed in this WP,
the Model part will be responsible to communicate with the Impress Platform modules through a
public REST API.

A public API has to be provided to allow the application developers to create their requests to the
Impress Platform, for more on these technicalities, refer to sections 6 and 7. Despite that, this public
API, as mentioned in Section 3, does not need to be implemented as a single software component.
All Impress Platform modules can be running in the same machine though, but that is not
mandatory. In the case of deploying Impress Platform modules in different machines, however, the
endpoints of every module should be also publicly available. Otherwise, application developers would
not know where to direct a given API call that is described as part of the public API documentation.
So given that application developers know the endpoint of every module and the Impress Platform's
modules can be used as black boxes via the public API, as depicted in Figure 6, hiding all the
complexities of the provided features from application developers.

Figure 6: Applications interfacing IMPRESS Platform via a Public API.

Document version: 1.3 Page 17 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

In practical terms, several applications would be accessing Impress public API to get data from Impress Plat-
form modules and configure them, via their Configuration Agents depicted in both Figure 1 and 2. Note that
there is no need to develop a single application that uses all Impress features. In fact, as can be seen in
D8.1, the proposed application in it is focused in the data analysis aspect of the energy scenario, being
handy for understanding how different appliances, whether currently in usage or possible options for pur-
chasing, can impact the overall energy consumption in the long run.

Obviously, more control-oriented applications, external to the proposed application in D8.1, will be running
in background enforcing, for instance, expected behaviours, like turning off light bulbs from a given room if
nobody is present or automatically deciding when to turn on or off exterior lamps, given the timezone of the
deployed system. Static use cases like these, which are expected in terms of automation, should not have to
be configured again every time Impress Platform is adopted. Especially because they are predictable for
most scenarios, probably with little or no adjustments at all.

One option, would be to embed most common use cases in Impress Platform, but that would again tie
Impress Platform to specific scenarios. The best alternative, in the sense of keeping Impress Platform both
extensible and separating concerns properly, would be for external applications to set these expected behav-
iours independently, with the help of the IDE Framework for Model-driven development which will be imple-
mented as part of WP7. The IDE is particularly useful when it comes to if-this-than-that (IFTT) application
logic, which is the case of the kind of expected behaviour that we cited here. That, however, does not solve
the problem of new adopters of the Impress Platform having to configure all automatic behaviour again. So,
in order to tackle this aspect, common use cases implemented as model-driven specifications could be pack-
aged and provided to the public, that could than choose what to use by their own and, if one of these pack-
ages does not suit a specific use case, tweak them to do so independently.

Document version: 1.3 Page 18 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

7. Guiding Principles for the Impress Platform Public API

7.1 API Security Policy

All API access intended to be exposed for applications must be over HTTPS. Whether Impress is a public or
private cloud, security still a concern to be taken into account, so we endorse HTTPS usage for Impress Plat-
form public API. HTTPS is a URI scheme which has identical syntax to the standard HTTP scheme. However,
HTTPS enforces the use of an added encryption layer of SSL/TLS, therefore creating a secure channel over
an insecure network. This ensures reasonable protection from eavesdroppers and man-in-the-middle at -
tacks.

7.2 Schema

All data must be sent and received as JSON [2], blank fields should be included as “NULL” instead of being
omitted and timestamp, which must be in UTC and represented in the ISO 8601 (i.e. YYYY-MM-
DDTHH:MM:SSZ) format.

7.3 URIs

The URIs by which resources are named are an important part of a REST API, since naming properly re-
sources can make an API intuitive and easy to use [3]. One of the most important conventions in the REST
architectural model is that URIs should represent nouns, not verbs. There are two reasons for this, the first
one is that the actions that can be performed are already defined by the HTTP verbs. For instance, a GET re-
quest can be used to retrieve resources. Second, since a REST call requires a request based on the standard
HTTP's methods, it only makes sense that requests are performed against a noun as opposed to another
verb, for example, consider the following URL:

GET /MyRestService/getDevices

This URI is saying to get the getDevices resource and this is clearly redundant. A better way to express this
would be through a URI like this:

GET /MyRestService/devices

Another convention is to use plural nouns for collections and perform actions on them, for example consider
the following URL:

GET /MyRestService/devices

Return a list of all devices.

GET /MyRestService/devices/20

Returns a single device with id 20.

The last convention is that URIs for REST services should grow hierarchically, for example:

GET /prediction/:device_id/measurements/:measurement_variable_id

This way the user first pass the device_id followed by a measurement_variable_id, making the REST API
more clear and easier to use.

Document version: 1.3 Page 19 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

7.4 Client Errors

There are three types of client errors on Impress Platform public API calls:

1. Sending invalid JSON [2] will result in a 400 Bad Request response.

Example:

HTTP/1.1 400 Bad Request
Content-Length: 35

{"message":"Problems parsing JSON."}

2. Sending the wrong type of JSON [2] values will result in a 400 Bad Request response.

Example:

 HTTP/1.1 400 Bad Request
 Content-Length: 40

 {"message":"Body should be in JSON format."}

3. Sending invalid fields will result in a 422 Unprocessable Entity response.

Example:
 HTTP/1.1 422 Unprocessable Entity
 Content-Length: 149

 {
 "message": "Validation Failed",
 "errors": [
 {
 "resource": "device",
 "field": "title",
 "code": "missing_field"
 }
]
 }

All error objects have resource and field properties so that your client can tell what the problem is. There’s
also an error code to let you know what is wrong with the field. These are the possible validation error
codes:

Error Name Description

missing_resource This means a resource does not exist.

missing_field This means a required field on a resource has not been set.

invalid_format This means the formatting of a field is invalid.

Document version: 1.3 Page 20 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

7.5 HTTP Verbs

APIs should make an appropriate usage of the HTTP verbs.

Verb Description

HEAD Can be issued against any resource to get just the HTTP header info.

GET Used for retrieving resources.

POST Used for creating resources.

PATCH
Used for updating resources with partial JSON [2] data. A PATCH request may ac-
cept one or more of the attributes to update the resource. PATCH is a relatively new
and uncommon HTTP verb, so resource endpoints also accept POST requests.

PUT
Used for replacing resources or collections. For PUT requests with no body attribute,
be sure to set the Content-Length header to zero.

DELETE Used for deleting resources.

Document version: 1.3 Page 21 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

8. REST API Documentation

This topic specifies a RESTful API for creating and managing IoT resources, including storage, data analysis,
and networking components.

This specification for the Impress Platform public API includes:

• Common behaviors that apply across all requests and responses.

• Resource models, which describe the JSON [2] data structures used in requests and responses.

• The requests that may be sent to cloud resources, and the responses expected.

This API operates on the following endpoints or resources, one for each of the modules in the Impress Plat-
form:

• Context Manager

• Data Analysis & Support System

• Data, Policy, Knowledge Storage

• Monitoring and Control

• Sensor and Data Fusion

• Service Proxy

8.1 Context Manager

This module will not be used directly by the application proposed in deliverable 8.1, therefore it is
not clear right now what interfaces should be exposed by it. To that extent, the Impress IDE that
will be developed, in WP7, is a better candidate to specify a possible API for this module as the
model-driven development methodology, employed in WP7's IDE, will be able to create applications
using this module.

8.2 Data Analysis & Support System

8.2.1 Predict Device's Measurement Variables

GET /prediction/:device_id/measurements/:measurement_variable_id
Return all predicted data points for a :measurement_variable_id of a given :device_id.

8.2.2 Parameters

Name Type Description

numberOfDataPoints integer The number of data points provided for the given time range.

upTo string
This specifies the time range used for prediction, from the cur-
rent time up to the timestamp specified. This is a timestamp in
ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.

Document version: 1.3 Page 22 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

8.2.3 Response

GET /prediction/20/measurements/5?numberOfDataPoints=10&upTo=2014-09-10T20:30:10Z

Status: 200 OK
{
 deviceId: 20
 currentTime: 2014-09-10T14:30:10Z
 upTo: 2014-09-10T20:30:10Z
 numberOfPredictedDataPoints: 10
 predictedDataPoints : [45,58,62,46,55,58,38,99,44,65]
}

8.3 Data, Policy, Knowledge Storage

As described in deliverable 5.1, the Data, Policy, Knowledge Storage module will be interfaced via a
Rexter server, which is able to to execute graph-based database operations in graph-based NoSQL
Databases, via Gremlim [7] queries. Or, in other words, the Rexter server allows developers to
communicate with Blueprints-enabled graphs in a language agnostic fashion. That is, we could
change the underlying NoSQL graph database at any time, without requiring any change to those
that interface with the Data, Policy and Knowledge Storage module. Rexter provides two alternatives
to query/generate graphs in graph-based NoSQL Databases: a REST interface [3] and a binary
protocol called RexPro [4]. Among those, we endorse RexPro [4] usage, since it is more lightweight
than HTTP calls via Rexter REST [3] interface. For more info on this module and the technologies
involved, please refer to deliverable 5.1.

However, it worth to mention that it is not necessary to hardcode neither Rexter REST nor RexPro
requests, in your source code, when willing to interface the Data, Policy, Knowledge Storage
module. Rexter uses a standard called Blueprints, popular among graph-based NoSQL databases.
Therefore, there are already compliant implementations in several programming languages, despite
Java's official support. Please refer to [5] for alternative libraries in Python, Ruby, .NET/C#, etc.

8.4 Monitoring and Control

8.4.1 Discovering all devices' states

GET resources/
Return a list of all devices' states.

8.4.2 Response

GET resources/

Status: 200 OK
[
 {
 deviceId: 20
 deviceIsOn: True
 },
 {
 deviceId: 10
 deviceIsOn: False
 },
 {
Document version: 1.3 Page 23 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

 deviceId: 55
 deviceIsOn: True
 },
]

8.4.3 Discovering a single device's state

GET resources/:device_id/
Return a given :device_id state.

8.4.4 Response

GET control/20/

Status: 200 OK
{
 deviceId: 20
 deviceIsOn: True
}

8.4.5 Editing a single device's state

PATCH resources/:device_id/
Edit a given :device_id state.

8.4.6 Parameters

Name Type Description

deviceIsOn boolean Whether the device is switched on or off.

8.4.7 Response

PATCH resources/20/

{
 "deviceIsOn": True
}

Status: 200 OK
{
 deviceId: 20
 deviceIsOn: True
}

8.5 Sensor and Data Fusion

This module will not be used directly by the application proposed in deliverable 8.1, therefore it is
not clear right now what interfaces should be exposed by it. To that extent, the Impress IDE that
will be developed, in WP7, is a better candidate to specify a possible API for this module as the
model-driven development methodology, employed in WP7's IDE, will be able to create applications
using this module.

Document version: 1.3 Page 24 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

8.6 Service Proxy

This module will not be used directly by the application proposed in deliverable 8.1, therefore it is
not clear right now what interfaces should be exposed by it. To that extent, the Monitoring and
Control module that will be developed, in WP3 and WP4, is a better candidate to specify a possible
API for this module as the model-driven development methodology, employed in WP7's IDE, will be
able to create applications using this module.

Document version: 1.3 Page 25 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

9. Conclusions

In this deliverable, we presented an initial specification for the Impress Platform public API. This API
will be used by applications to interface Impress Platform modules' services. Thus, being essential
for the application proposed in deliverable 8.1 that will leverage on Impress Platform reusable
modules to provide energy management and data analytics capabilities to end-users.

This initial specification entails two parts: the Impress Platform public API documentation, which is a
Restful API, and a set of guidelines. These guidelines aim to facilitate extending this document's
APIs, as requirements change, without abdicating proper consistency in terms of HTTP verbs usage,
error handling, schema, and security policies among Impress Platform modules' individual
implementations.

Consistency, in this sense, is important since it makes the whole API more predictable, for
developers implementing applications. The resulting middleware is expected to be easy to interface,
therefore possibly leading to a higher adoption rate of the Impress Platform, as hard to use
technologies tend to fade to oblivion in the long run regardless of their power.

Additionally, aspects regarding physical devices and third-party systems deployment at UFPE were
covered, so that partners can get a grasp of how to proper conceive their modules to facilitate
software/hardware integration.

Finally, minor changes in the architecture were proposed, in order to guarantee that Impress
Platform will remain appealing for non-energy scenarios, by preventing to embed concerns from
specific scenarios in the core of the Impress Platform.

Document version: 1.3 Page 26 of 27 Submission date: 14 May 2014

Impress D8.2 Application Architecture for Energy Management

10. References

[1] Fielding, Roy Thomas. Architectural styles and the design of network-based software architectures. Diss.
University of California, 2000.

[2] JSON. http://www.json.org/

[3] Rexter REST API Documentation. http://github.com/tinkerpop/rexster/wiki/Basic-REST-API

[4] Rexter RexPro API Documentation. http://github.com/tinkerpop/rexster/wiki/RexPro

[5] Rexter Documentation. http://github.com/tinkerpop/rexster/wiki

[6] SOAP. http://www.w3.org/TR/soap/

[7] Gremlin – Graph Database Language. http://github.com/tinkerpop/gremlin

[8] Hydra Middleware. http://www.hydramiddleware.eu/news.php

[9] Plugwise's Circle. http://www.plugwise.com/products/#filter=meters-switching

[10] Belkin's WeMo Insight Switch. http://www.belkin.com/us/F7C029-Belkin/p/P-F7C029/

[11] Digi's Xbee Smart Plug. http://www.digi.com/products/wireless-modems-peripherals/wireless-range-
extenders-peripherals/xbee-smart-plug-zb

[12] D-Link's DSP-W215 Wi-Fi Smart Plug. http://www.dlink.com/us/en/home-solutions/connected-home/smart-
plugs/dsp-w215

[13] Edimax's SP-1101WSmart Plug Switch. http://www.edimax.com/en/produce_detail.php?
pd_id=517&pl1_id=33&pl2_id=154

[14] SmartThings' SmartPower Outlet. https://shop.smartthings.com/#/products/smartpower-outlet

Document version: 1.3 Page 27 of 27 Submission date: 14 May 2014

	1. Executive summary
	2. Introduction
	3. Impress Platform Overview
	4. Impress Platform Architecture
	5. UFPE's Demo Architecture
	5.1 UFPE's Monitoring Scope
	5.2 Monitored & Controlled Parameters
	5.3 Monitored & Controlled Devices
	5.4 Renewable Energy Considerations

	6. Impress Application Architecture
	7. Guiding Principles for the Impress Platform Public API
	7.1 API Security Policy
	7.2 Schema
	7.3 URIs
	7.4 Client Errors
	7.5 HTTP Verbs

	8. REST API Documentation
	8.1 Context Manager
	8.2 Data Analysis & Support System
	8.2.1 Predict Device's Measurement Variables

	8.2.2 Parameters
	8.2.3 Response

	8.3 Data, Policy, Knowledge Storage
	8.4 Monitoring and Control
	8.4.1 Discovering all devices' states

	8.4.2 Response
	8.4.3 Discovering a single device's state

	8.4.4 Response
	8.4.5 Editing a single device's state

	8.4.6 Parameters
	8.4.7 Response

	8.5 Sensor and Data Fusion
	8.6 Service Proxy

	9. Conclusions
	10. References

