

Target Outcome: b) Sustainable technologies for a Smarter Society

(FP7 614100)

D7.2.1. Integrated First Proof of Concept IMPRESS platform

18 September 2014 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 2 of 35 Submission date: 18 September 2014

Document control page

Document file: D7.2.1. Integrated First Proof of Concept IMPRESS platform.docx

Document version: 1.0
Document owner: Ferry Pramudianto (FIT)

Work package: WP7. IDE Framework for Model-driven development

Task: Task 7.2 Components Integration

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Ferry Pramudianto August 1,
2014

ToC defined

0.2 Ferry Pramudianto Sept 16 ,

2014

Content defined

1.0 Ferry Pramudianto Sept 18 ,

2014

Document finalized

Internal review history:

Reviewed by Date Summary of comments

Davide Conzon Sept 18 ,
2014

Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 3 of 35 Submission date: 18 September 2014

Index:

1 Executive summary .. 4

2 Introduction ... 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 Background .. 5

3 IMPReSS Development Platform .. 6

4 Resource adaptation layer (RAI) ... 9

4.1 RAI REST API .. 10

5 Resource Management ... 12

5.1 Local Resource Manager API .. 14

6 Data Storage and Analytics .. 16

6.1 Data Storage Module ... 16
6.1.1 REXSTER Basic REST API .. 17

6.2 Data analytics module ... 20

7 Context Management ... 28

7.1 IoTLink Implementation ... 28
7.1.1 The connection components ... 31
7.1.2 Defining Complex Event Processing ... 31
7.1.3 Defining Virtual Object Component.. 32
7.1.4 Output Components ... 32
7.1.5 Generated Application .. 34

8 References .. 35

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 4 of 35 Submission date: 18 September 2014

1 Executive summary

The IMPRESS development platform consists of a set of technologies that help to build general-purpose

applications accessing to a plethora of sources, such as information from the physical world, analyzing
and fusing relevant data, and performing monitoring and control operations on complex systems. This

is achieved through the definition of a number of tools and pre-defined modules that can be managed
and combined in order to define a specific logic flow.

In the first iteration we focus on developing the initial middleware solution consisting of the
following components:

- Resource adaptation interface aims to provide uniform abstraction of the IoT resources that are

exposed by the IoT Service Proxies.

- Resource Management operations for solving conflicts, for scheduling and management of

mixed-criticality, through the implementation of priority policies. In this phase,

- The Data, Policy and Knowledge Storage is responsible for managing the persistence of various

data and information. We adopted graph database that is able to provide the necessary

expressiveness to store data and information as well as knowledge extracted from for instance
historical sensor data, analysed information, learned knowledge, policies, configurations etc.

- The Data Analysis & Support System Module provides the necessary algorithms to extract
information and pattern among data and increases the effectiveness of the support system

operations. The analytics module also enables applications to perform interpolation and data

forecasting based on the historical data in order to support the decision-making processes
effectively.

- Prototype of a model driven development tool. The tool comprise a visual language that allows
developers to define the component of context aware applications visually. Moreover, it allows

the developers to define Sensor and Data Fusion algorithms to process inputs from the available
Application-domain Resources by aggregating and filtering raw data and events. (e.g. calculating

the average temperature in a room using temperature measures from sensors deployed in the

room or the variable resistor values from voltage and current measures, etc.). The generated
java code enables applications to associate the acquired sensor values to the context of the

domain objects based on the context model defined by the developers.

The impress platform are integrated through REST based services that can be accessed through

different programming languages and computing platform.

The current state of the IMPReSS middleware has provided a framework for the future development
of the middleware. Moreover, the initial IDE is able to generate java codes that take an advantage of

the available components allowing developer to experiment with context aware applications rapidly.
However, a more integrated solution is required in the second iteration e.g. using the data analytics

module from the IDE’s user interface, generate not only the access to the device proxy but also
allows developers to define device proxies from the IDE.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 5 of 35 Submission date: 18 September 2014

2 Introduction

2.1 Purpose, context and scope of this deliverable

The IMPRESS development platform consists of a set of technologies that help to build general-purpose
applications accessing to a plethora of sources, such as information from the physical world, analyzing

and fusing relevant data, and performing monitoring and control operations on complex systems. This

is achieved through the definition of a number of tools and pre-defined modules that can be managed
and combined in order to define a specific logic flow.

The purpose of this deliverable is to report the progress of the IMPReSS platform in each technical
work packages (WP3, WP4, WP5, WP6) and the integration between the components developed

within these work packages. Therefore, in this deliverable, the technical components are

summarized and the APIs are presented.

The integration activities were mainly driven by WP2 where the architecture was discussed and

agreed. To ensure that these components can be integrated easily the partners have agreed to
provide REST based API that is supported by different programming languages. That may be used

by the partners to create the prototype of the components. Moreover, the partners have agreed to
use JSON data format, which still can be used by resource-constrained devices such as Raspberry Pi.

2.2 Background

IMPReSS is a EU-Brazil cooperation project aiming at providing a Systems Development Platform

(SDP), which enables rapid and cost effective development of mixed criticality complex systems
involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with

users and external systems. The IMPReSS development platform will be usable for any system
intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint
in public buildings, enhancing the intelligence of monitoring and control systems as well as stimulating

user energy awareness.

The IMPReSS Platform consists of a set of technologies that help to build general-purpose applications
accessing to a plethora of sources, such as information from the physical world, analyzing and fusing

relevant data, and performing monitoring and control operations on complex system. The IMPReSS
project aims at solving the complexity of system development platform (SDP) by providing a holistic

approach that includes an Integrated Development Environment (IDE), middleware components, and

a deployment tool.

The architecture presented here is used as the reference for building IMPReSS applications and as

such, it provides views on different design aspects and concerns of stakeholders of the IMPReSS
platform. A unique software architecture plays a key role in maintaining partners aware of the IMPReSS

platform capabilities so that they can always refer to when designing and implementing particular
modules. The architecture establishes fundamental concepts and properties of the system

contextualized within its environment and expressed by their elements and relationships and evolution

guidelines.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 6 of 35 Submission date: 18 September 2014

3 IMPReSS Development Platform

As envisioned at the beginning of the project, the IMPRESS development platform consists of a set

of technologies that help to build general-purpose applications accessing to a plethora of sources,
such as information from the physical world, analyzing and fusing relevant data, perform monitoring,

and control operations on complex system. This is achieved through the definition of a number of
tools and pre-defined modules that can be managed and combined in order to define a specific logic

flow.

Figure 1. IMPRESS platform.

The Application-domain Resources cloud represents all the entities that IMPRESS platform can
interoperate with. These entities are:

 Physical world devices (e.g. appliances, sensors and actuators, smart meters, etc.) including
personal devices (e.g. smartphones and tablets).

 External and third-parties systems (e.g. pre-existent management systems and networks,
business-domain and public authorities systems, third-parties systems, pre-existent systems
and networks to avoid extensive retrofitting, third-parties platforms for seamless federation
with other similar platforms, subsystems etc.).

 Open and proprietary services (e.g. cloud-based services such as, for instance, weather
services, sensor streams, RSS feeds, etc.).

The various resources are seamlessly connected to the IMPRESS platform through Service Proxies
that expose their functionalities as Internet of Things services, irrespective of their underlying

communication protocols. Service Proxies uses a Resources Adaptation Interface (RAI) that allows
the IMPRESS platform to connect the Application-domain Resources and expose their measurements

and capabilities through a common interface and data model.

Monitoring and Control Module aims to optimize complex system operations acting on available
Application-domain Resources exposed by the IoT Service Proxies. This module performs also

Resource Management operations for solving conflicts, for scheduling and management of mixed-
criticality, through the implementation of priority policies.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 7 of 35 Submission date: 18 September 2014

The control algorithms implemented in this module are fed with data collected from Application-
domain Resources and with additional information inferred by the processing operations performed

by Sensor and Data Fusion Module and Data Analysis & Support System Module. Context information

from Context Manager Module can also be useful for monitoring and control tasks. Moreover, the
control process can also consider user commands from external applications (e.g. turn-on remotely

an appliance from smartphones, etc.) as input.

The Data, Policy and Knowledge Storage is responsible for managing the persistence of various data

and information. The Data, Policy and Knowledge Storage makes the upper layers and modules
independent of where the data is stored, whether locally or in the cloud. It supports relational as

well as noSQL storage technologies. Data and information to be maintained include for instance

historical sensor data, analyzed information, learned knowledge, policies, configurations etc. It is
available for all the components of the IMPRESS platform, storing both raw data and enhanced

information. Within the Data, Policy and Knowledge Storage, the Data Warehouse stores raw data
from Application-domain Resources and enhanced data and information inferred by sensor and data

fusion modules.

The Sensor and Data Fusion Module processes inputs from available Application-domain Resources
by aggregating and filtering raw data and events (e.g. to ease scalability storing data with a

granularity suitable for the application, to perform high-data-rate applications, etc.) and combining
data to synthesize new and enhanced application-domain information (e.g. calculating the average

temperature in a room using temperature measures from sensors deployed in the room or the
variable resistor values from voltage and current measures, etc.).

The Context Manager Module keeps and manages context information. It manages the context

information using data extracted from available Application-domain Resources. It associates context
information to raw and enhanced values (e.g. stating that temperature sensor, which its unique

identifier is ‘1234’, is deployed in the room identified as ‘bedroom’ on the ‘3rd floor’ of the building
‘xyz’ sited at ‘50th Avenue’, belonging to ‘abed’ company, etc.). It defines general data models,

possibly based on open standards, to describe the context in a suitable way.

The Data Analysis & Support System Module identifies and extracts information such as relations
among data and increases the effectiveness of the support system operations; the main function of

this module is to extract in a short time the information coming from large amounts of data, in order
to effectively use this information in the decision-making processes. It provides support to the

control algorithms performed in the Monitoring and Control Module and generates suggestions and

alarms to user-side application. This module is in charge of performing runtime analysis, allowing the
system to be aware of its current status and adapting its operation depending on the context

information.

The Configuration Tool sets the policies of the whole platform. It shows to the platform Manager all

the devices and modules belonging to the system, allowing to configure the parameters of the
modules of the overall platform.

The Composition Tool allows interconnecting the various modules belonging to the platform. This

module is a commissioning tool used by the platform Integrator that allows defining the connections
among the different modules needed to implement specific application logic.

These tools are strictly related to a configuration framework defined within the IMPRESS Platform.
This framework is inspired by SNMP architecture and aims at performing the configuration and

integration of hardware and software resources. It is composed by two components:

 A Configuration and Composition Manager

 A Configuration Agent

The Configuration and Composition Manager is the module in charge of managing the configuration

and composition processes of the other modules into the platform; it works as an interface between
the Configuration and Composition Tools and the various modules within the platform.

A Configuration Agent is associated with each module of the platform. It exposes configuration and
control parameters of a specific module to the Configuration and Composition Manager. The

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 8 of 35 Submission date: 18 September 2014

Configuration Agent operates actually the configuration commands coordinated by Configuration and
Composition Manager. The association of an agent to each module makes the system more

expandable and scalable from the point of view of configuration issues.

The APIs for interfacing the IMPRESS platform can be divided in three categories:

 APIs for system Integrators: useful to support deployment and installation of the platform.
They provide methods for combining different modules and commissioning the specific logic
flow.

 APIs for system Managers: useful to set the parameters of the platform modules to make the
system effective.

 APIs for system Users: useful to operate on application level functionalities (e.g. for system
monitoring and control, fine-grained configuration, etc.).

The IMPRESS platform builds on the LinkSmart Middleware formerly

defined within the Hydra project and that is being used and
extended in other EU projects ([SEEMPubS] (FP7), [ME3Gas]

(ARTEMIS) and ebbits (FP7) projects). The LinkSmart middleware
provides interoperable interconnection among appliances,

devices, terminals, subsystems, services and predefined

modules. LinkSmart enables a Service Oriented Architecture
(SoA) and facilitates interoperability between devices and

other web services. The green blocks in the figure
represent the core of the LinkSmart Middleware.

These modules are responsible for the connection
of the platform to the Internet Backbone, for the

communication and security management (e.g.

access control), network administration, etc.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 9 of 35 Submission date: 18 September 2014

4 Resource adaptation layer (RAI)

RAI aims to abstract the concept of resource (i.e. physical devices or third-party systems), providing

a generic “device” that can be used to seamlessly communicate with resources despite of
technology-specific implementation details. RAI is located on the extreme edge of the IMPReSS

platform, just before the hardware and software resources, and can cooperate with the LinkSmart
middleware, which the platform is based on. The heterogeneous nature of physical devices requires

finding a way to interact simply with the resources.

A single RAI instance is able to abstract many different resources at the same time. It needs just to

execute the specific DeviceManager(s) for the specific resources to abstract. An IMPReSS Service Proxy

leverages on RAI APIs and can expose within the IMPReSS ecosystem the resources as “services” to
be consumed. The Service Proxy can thus offer a number of services depending on the available

resources that RAI can manage.

To generalize the vision of Service Proxy as a service aggregator, we can also consider an architecture

as shown in Figure 2, which introduce the Connector concept.

Figure 2: Architecture using RAI connectors

The RAI architecture is composed by three layers, completely decoupled with each other. The lower

layer of the architecture consists in a set of technology-specific DeviceManager(s) classes that are
responsible for the actual integration of different resources. These components are able to handle

specific types of networks. The first implementation of the RAI, the models consist just in a set of
Java interfaces that define a basic number of methods/services provided by the most common

device types.

The middle layer is the RAI core, which is in charge to map the southbound devices and to notify
upper layers about each network changing. The RAI core implements the core interfaces providing

an actual implementation of the methods useful to interact with the physical world and get values
from physical devices. This component implements the DeviceListener interface, because it has to be

aware of the current list of the devices available in the RAI instance, in order to expose them to the

other components like the connectors.

The upper layer is responsible for the exposition of the methods/services provided by the resources.

This layer is made of the APIs offered by the RAI core, in order to retrieve and manage virtual
devices and call their resource-specific methods. The connectors are additional components that are

placed upon RAI API (as shown in Figure 3) and are in charge to expose application-level resources,

using standard communication protocols like REST, SOAP, XMPP, MQTT, etc.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 10 of 35 Submission date: 18 September 2014

Figure 3. Architecture of the Resource Adaptation Interface

4.1 RAI REST API

In this section are described all the REST resources currently exposed by the RAI REST Connector.

The table below shows a list of REST resources, including a resource description and an example of

usage. Currently, the RAI REST Connector returns JSON documents to avoid performance issues, but

it will be always possible to modify these resources to return both JSON and XML documents.

Resource Description Output example
/devices?deviceType={}&ne

tworkType={}
This resource retrieves the detailed list of the devices
adapted by the RAI, parsed as a JSON vector. This

resource filters device basing on the network and the
device type.

Parameters:
 networkType: the network type to which the

device belong (optional)

 deviceType: the device type to which the
device belong (optional)

HTTP GET devices/
[

{
 "id": "3300",

 "raiId": "bc71ffa1-20ae-4c2c-8e54-
1afb80d3088f",
 "type": "rai:Thermometer",

 "networkType": "rai:Xively",
 "latitude": 43.44984,

 "longitude": -3.83006,
 "updatedAt": "2014-05-14 06:38:08",

}
…
]

/devices/{deviceId} This resource retrieves details about a specific
device, parsed as a JSON.

Parameters:
 deviceID: is the id assigned by the RAI

HTTP GET devices/bc71ffa1-20ae-4c2c-8e54-
1afb80d3088f

{
 "id": "3300",

 "raiId": "bc71ffa1-20ae-4c2c-8e54-
1afb80d3088f",
 "type": "rai:Thermometer",

 "networkType": "rai:Xively",
 "latitude": 43.44984,

 "longitude": -3.83006,
 "updatedAt": "2014-05-14 06:38:08",
 “temperature”: 32

}

/devicemanagers This resource retrieves device managers list. The

result is a JSON vector containing a list of devices
manager available.

HTTP GET /getalldevicemanagers

[
 {

 "id": "7cfe96f3-6b69-442e-861a-
989add208bc5",
 "status": "STARTED",

 "networkType": "rai:Xively"
 }

……

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 11 of 35 Submission date: 18 September 2014

]

/devicemanagers/{deviceMa

nagerId}

This resource retrieves device manager details. The

result is a JSON containing details about the selected
device manager.

Parameters:
 deviceManagerId: the device manager id

assigned by the RAI

HTTP GET /getalldevicemanagers/7cfe96f3-

6b69-442e-861a-989add208bc5
{

 "id": "7cfe96f3-6b69-442e-861a-
989add208bc5",

 "status": "STARTED",
 "networkType": "rai:Xively"
}

/devicemanagers/{deviceMa

nagerId}

This resource has the same URL of the previous one,

but it accepts POST. This can be used to change
status to a specific device manager. This resource

could be used to change any devices manager field.
Possible result are:
 200 OK: everything is correct

 503 SERVICE_UNAVAILABLE: change device
manager status fails

 404 NOT_FOUND: the required device

manager id does not exist

Parameters:
 deviceManagerId: is the device manager

id assigned by the RAI

HTTP POST

/devicemanagers/{deviceManagerId}

{
 “status”: STARTED | STOPPED
}

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 12 of 35 Submission date: 18 September 2014

5 Resource Management

In the future IoT systems will be open computing platforms that support applications developed by

third party developers much in the same way as PCs, tablets, and mobiles phones at the moment.
Managing the access to resources between mixed criticality 3rd party applications is a big challenge

in these types of open IoT systems. In IMPReSS project, we provide a solution to this challenge by
abstracting the resources access and providing platform components for managing the access to

application level resources (i.e. sensors and actuators).

Figure 4. Resource management architecture for mixed critical IoT applications.

The resource management architecture presented in the Figure 4 consists of two levels: global and
local. At the global level, the role of the resource management is twofold. First, solve conflicts

between applications that either request exclusive access to a same application level resource (ALR)

or request access to different resources that might interfere with each other in the real word (e.g.
lights, heating systems, etc.). Second, optimize the usage of resources shared between applications

so that the performance of the whole IoT system is as optimal as possible. At the global level two
components, namely System Knowledge Base and Global Resource Manager are required. The

System Knowledge Base stores information about resources, applications and devices in a machine-

interpretable format that can be accessed by other IMPReSS components through publish/subscribe
communication. The Global Resource Manager is responsible for assigning the actual resources to

the applications according to a certain scheduling algorithm.

The Local Resource Manager is responsible for managing access to particular resources and act as a

dedicated guard to those local resources. The basic principle in LRM’s Scheduler is to guarantee that
applications that are more critical are served before less critical ones. It is composed by two sub-

components:

 The Scheduler, which regulates the access to resources when multiple applications are

authorized to access the same resource. The basic principle in LRM’s Scheduler is to
guarantee that applications that are more critical are served before less critical ones. A

possible approach that can suit IMPReSS goals can be a priority based pre-emptive
scheduling. This approach guarantees the more critical applications are served before less

critical ones. The main issue of this approach is that it can happen that the less critical

applications are not served at all, determining the starvation of lower priority applications

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 13 of 35 Submission date: 18 September 2014

when there are many high critical applications. In some cases can be more suitable a round-
robin scheduling algorithm, which allow an application to access a resource following the

order of the requests. In this case, the scheduler will perform the pre-emption of the running

application placing it at the end of a queue of waiting applications and continuing giving
access to the next application within the queue.

 The Access Controller, which is responsible for publishing the resource description of the ALR

it manages into the System Knowledge Base. This way, the ALRs are “registered” to the
Global Resource Manager (GRM). Once GRM grants the access to the ALR (see D4.1.1 for

more details), the Access Controller is also responsible for checking if the Application who
requests to interact with ALR is the one previously authorized by GRM. If the Application has

been authorized, it can proceed calling the specific service provided by the abstracted ALR.

When a new resource (and LRM) is added to the IMPRESS platform, it needs to be first discovered by
the Resource Discovery Manager component. The actual methods for resource discovery will be

investigated in Task 3.2 and reported in Deliverable 3.2. Once a new resource is found, the Resource
Discovery Manager requests the description of the resource and inserts it into the System Knowledge

Base. This way other components of the IMPRESS platform are aware of the resources in the network.

One of these components is the Global Resource Manager that is subscribed to the resource
specifications defined by the applications and will be notified every time a new resource matching the

specification is found. This interaction is depicted in the Figure 5.

Figure 5. Resource discovery and registration.

Application get access to resources by sending a reserveResource() request to the GRM. The message
parameters define the resource specification of interest. The GRM will select the most suitable resource

for the application from all the resources matching the given specification and notifies the application

about the resource. In order to assign the more suitable resources to the applications, the resource
description must be constantly updated with information such as the total service execution time,

packet loss rate, service utilization rate, etc. Such kind of information are going to be retrieved by the
IMPReSS Network Manager, which will operate at both resource and Service Proxy levels in order to

update the resource description on the System Knowledge Base. The role of the Network Manager will
be more deeply analysed and defined within Deliverable D3.4. An extended version of the Service

Proxy interface will be defined in order to provide relevant services to the Network Manager.

Additionally, the GRM informs the LRM about the application authorized to access the resource. This
is done with the authorizeAccess() message which defines the application ID, the criticality, and the

required security level. Once the application and the LRM have been notified about the pairing the
application can start requesting domain specific services provided by the resource. This happens be

sending a requestResource() message to the LRM with the actual domain specific operation as payload.

If the LRM receives multiple simultaneous requests it schedules them based on the criticality of the
application. This way the more critical applications are always served before less critical ones. The

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 14 of 35 Submission date: 18 September 2014

Figure 6 illustrates message exchange between applications, GRM and LRMs in an example scenario
where two applications need to access a sensor resource using shared access scheme.

Figure 6. Message exchange between applications, global RM, local RM, and a resource.

5.1 Local Resource Manager API

In this Section, the APIs exposed by the LRM to the GRM for the control of ALRs are described. The

REST interface is described as follows:

GET lrm/request_resource/:operation

POST lrm/authorize_access

POST lrm/deauthorize_access

GET lrm/description

Services

GET lrm/request_resource/:operation

 Description:

 The GET method has been chosen for this operation, because is idempotent on the status of
 the LRM. The appID is passed as custom header and not as sub-resource or

 parameter of the URL, because it doesn't involve the name of the resource (the url), the
 state of the resource (the body), or parameters directly affecting the resource (parameters).

 Parameters:

 appID: required. ID of the application that has requested to execute an operation on the
 resource. Example value: App124

 operation: required. Specific operation to be executed on the resource. Example value:
 getTemperature.

 Returns:

 Resource/Operation specific value.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 15 of 35 Submission date: 18 September 2014

Example request:

GET http://127.0.0.1/lrm/request_resoure/getTemperature

POST lrm/authorize_access

 Description:

The POST method has been chosen for this operation because it updates the status of the

LRM, the parameters are passed as POST data.

 Parameters:

appID: required. ID of the application that is authorized to access to the resource. Example
value: App124

priority: required. Level of priority assigned to the application (used to schedule the access

to the resource, among different applications, with different priorities). Example value: 1

securityLevel: required. Level of security required to access to the resource. Example value:

low

Example request:

POST http://127.0.0.1/lrm/authorize_access

POST Data: appID:app124&priority=1&securityLevel=low

POST lrm/deauthorize_access

 Description:

The POST method has been chosen for this operation for this operation because it updates

the status of the LRM, the parameters are passed as POST data.

 Parameters:

 appID: ID of the application that is no longer authorized to access to the resource.

Example request:

POST http://127.0.0.1/deauthorize_access

POST Data: appID:app12

GET lrm/get_description

 Description:

 The GET method has been chosen for this operation, because is idempotent on the status of
 the LRM.

 Returns:

 Description of Resource.

Example request:

GET http://127.0.0.1/lrm/get_description

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 16 of 35 Submission date: 18 September 2014

6 Data Storage and Analytics

6.1 Data Storage Module

Under the IMPRESS platform, the data semantics and analytics are the fundamental features needed

to support the decision making process. Multi sensor data fusion provides a means to fuse raw data

into meaningful higher-level information for the users. Moreover, the recognition of the modelled

situations requires understanding the technicalities of each sensor, signal processing, and sensor

fusion techniques to combine readings from different sensors. In such scenario, where the information

about the interconnectivity or the topology of the data is more important than, or as important as, the

data itself, the data modelling based on graph has several advantages.

First, graphs provide a natural and flexible way to represent information about real world (i.e. real

world objects are nodes and relations between different objects are vertexes/edges). Second, typical

graph databases provide built-in structures (i.e. nodes and edges) to represent graphs. Whereas in

other databases, relationships between entities in the data model would have to be handled by the

modeler at the model level. In other words, new tables or columns, at least in the SQL case, would

have to be maintained only for the sake of being used as query indirection stages that point to other

entities, probably via foreign keys. For these reasons, the data modelling adopted in the project is

based on a property graph representation. In the realm of graphs' morphism, a property graph is a

vertex/edge-labeled/attributed, directed, multi-graph. On sufficiently powerful machines, local graph

databases can support a couple billion edges while distributed systems can handle hundreds of billions

of edges. However most distributed graph-based NoSQL databases, like Neo4j1, does not provide the

means for global graph algorithms to be per-formed within a reasonable milliseconds time scale, in a

hundreds of billions of edges scenario. Since the data storage in IMPReSS aims to support data

processing for machine learning and data fusion techniques, be able to have a continuous feedback

loop that works almost in quasi real time and have a global view of the current and past state of the

system is required. Considering this practical concern, we adopt Titan2 that supports several storage

backend such as Cassandra, which is a column-family NoSQL database developed and open sourced

by Facebook in 2008, Hbase3, which is an open source implementation of Google's BigTable, Oracle

Berkeley DB4 and Akiban Persistit5. To support distributed batch processing and support graph

analytics in a timely manner, we use Faunus6. Faunus is able to distribute queries steps in the available

Titan clusters and performs load balancing of the workload. Therefore, drastically reducing latency for

database operations in graphs with billions of edges and nodes. Faunus works on top of Hadoop7,

which is an open source project backed by the Apache Foundation and based on Google's Map-Reduce

white paper. For querying, we use a domain-specific language, the Gremlim language8, which can

perform complex operations in multi-relational graphs, called property graphs. Gremlim is based on

the Groovy language9. With Gremlin it is possible to perform operations such as the addition or

removal of nodes/edges, manipulate the graph indexes, complex graphs transversals, etc. Also, it is

part of the Blueprints10 stack. Finally, we chose to use a Rexter server11, which is also part of the

1 http://www.neo4j.org/
2 http://thinkaurelius.github.io/titan/
3 https://hbase.apache.org/
4 http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
5 http://www.akiban.com/
6 http://thinkaurelius.github.io/faunus/
7 https://hadoop.apache.org/
8 https://github.com/tinkerpop/gremlin
9 http://groovy.codehaus.org/
10 http://thinkaurelius.github.io/titan/
11 https://github.com/thinkaurelius/titan/wiki/Rexster-Graph-Server

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 17 of 35 Submission date: 18 September 2014

Blueprints stack, to be the interface exposed for developers to execute database operations, via

Gremlim queries. the Rexter server allows developers to communicate with Blueprints-enabled graphs

in a language agnostic fashion. That is, we could change the underlying NoSQL graph database at any

time, without requiring any source code change in the clients of the Data, Policy and Knowledge

Storage module. Using Rexter, developers can access the Blueprints API over HTTP/REST directly or

by using libraries that support Blueprints API. The Rexter server supports both a JSON-based REST

interface and a binary protocol called RexPro. In our architecture, we favoured the RexPro case due

to its smaller footprint. When a Gremlim query is received, the Rexter server passes it to one of the

Faunus clusters and waits for the response, which is then replied back to the requester.

6.1.1 REXSTER Basic REST API

6.1.1.1 GET Operations

returns uri description

graphs /graphs get all the graphs

graph /graphs/<graph> get the graph named

vertices /graphs/<graph>/vertices get all vertices

vertices /graphs/<graph>/vertices?key=<key>&value=<value>

get all vertices for a key

index given the

specified<key>/<valu
e>

vertex /graphs/<graph>/vertices/<id> get vertex with id<id>

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 18 of 35 Submission date: 18 September 2014

vertices /graphs/<graph>/vertices/<id>/out

get the adjacent out

vertices of

vertex <id> 4

vertices /graphs/<graph>/vertices/<id>/in
get the adjacent in

vertices of vertex<id> 4

vertices /graphs/<graph>/vertices/<id>/both

get the both adjacent in

and out vertices of

vertex <id> 4

long /graphs/<graph>/vertices/<id>/outCount

get the number of out

vertices of

vertex <id> 4

long /graphs/<graph>/vertices/<id>/inCount

get the number of in

vertices of

vertex <id> 4

long /graphs/<graph>/vertices/<id>/bothCount

get the number of

adjacent in and out

vertices of

vertex <id> 4

longs /graphs/<graph>/vertices/<id>/outIds

get the identifiers of out

vertices of

vertex <id> 4

longs /graphs/<graph>/vertices/<id>/inIds

get the identifiers of in

vertices of

vertex <id> 4

longs /graphs/<graph>/vertices/<id>/bothIds

get the identifiers of

adjacent in and out

vertices of

vertex <id> 4

edges /graphs/<graph>/edges get all edges

edges /graphs/<graph>/edges?key=<key>&value=<value>

get all edges for a key

index given the

specified<key>/<valu
e>

edge /graphs/<graph>/edges/<id> get edge with id<id>

edges /graphs/<graph>/vertices/<id>/outE
get the out edges of

vertex <id> 4

edges /graphs/<graph>/vertices/<id>/inE
get the in edges of

vertex <id> 4

edges /graphs/<graph>/vertices/<id>/bothE
get the both in and out

edges of vertex <id> 4

indices /graphs/<graph>/indices

get all the indices

associated with the

graph

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 19 of 35 Submission date: 18 September 2014

elements
/graphs/<graph>/indices/index?key=<key>&value=<value
>

get all elements

with <key>property

equal

to<value> in index

long
/graphs/<graph>/indices/index/count?key=<key>&value=
<value>

get a count of all

elements

with<key> property

equal

to <value>in index

keys /graphs/<graph>/keyindices/
get the combination of

vertex and edge keys

keys /graphs/<graph>/keyindices/vertex get vertex keys

keys /graphs/<graph>/keyindices/edge get edge keys

prefixes1 /graphs/<graph>/prefixes
get the list of SailGraph

prefixes

prefix 1 /graphs/<graph>/prefixes/prefix
get a specific prefix

value

6.1.1.2 POST Operations

returns uri description

vertex /graphs/<graph>/vertices
create a vertex with no

specified identifier

vertex /graphs/<graph>/vertices/<id>
create a vertex with

id <id> 2

vertex
/graphs/<graph>/vertices/<id>?<key>=<value>&<key'>
=<value'>

create a vertex with

id <id> and the provided

properties (or update vertex

properties if vertex already

exists). 2

edge
/graphs/<graph>/edges?_outV=<id>&_label=friend&_in
V=2&<key>=<key'>

create an out edge with no

specified identifier from

vertex <id> to

vertex 2 labeled “friend”

with provided properties. 2

edge
/graphs/<graph>/edges/3?_outV=<id>&_label=friend&_
inV=2&<key>=<key'>

create an out edge with

id 3 from vertex <id> to

vertex 2 labeled “friend”

with provided properties. 2

edge /graphs/<graph>/edges/3?<key>=<key'>
update the properties of the

edge with id 3

index 3 /graphs/<graph>/indices/index?class=vertex
create a new manual index

named index

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 20 of 35 Submission date: 18 September 2014

void /graphs/<graph>/keyindices/vertex/<key>
create a new key index for a

vertex

void /graphs/<graph>/keyindices/edge/<key>
create a new key index for

an edge

void 1
/graphs/<graph>/prefixes?namespace=http%3A%2F%2Fww
w.ggl.com&prefix=pf

add a new SailGraph prefix

with namespacehttp://ww

w.ggl.com and prefix pf

6.1.1.3 PUT Operations

returns uri description

vertex
/graphs/<graph>/vertices/<id>?<key>=<value>&<ke
y'>=<value'>

replaces the all existing

properties of the

vertex <id>with those specified

edge
/graphs/<graph>/edges/<id>?<key>=<value>&<key'>
=<value'>

replaces the all existing

properties of the edge <id>with

those specified

void
/graphs/<graph>/indices/index?key=<key>&value=<
value>&id=<id>

put vertex with

id <id> intoindex at <key>/<
value>

6.1.1.4 DELETE Operations

returns uri description

void /graphs/<graph>/vertices/<id> remove vertex <id>

void /graphs/<graph>/vertices/<id>?<key>&<key'>

remove

properties <key>and <key'>

from vertex<id>

void /graphs/<graph>/edges/3 remove the edge with id3

void /graphs/<graph>/edges/3?<key>&<key'>

remove

properties <key>and <key'>

from edge3

void /graphs/<graph>/indices/index drop the index namedindex

void
/graphs/<graph>/indices/index?key=<key>&value=<v
alue>&class=vertex&id=<id>

remove the

vertex <id>from index at<k
ey>/<value>

void 1 /graphs/<graph>/prefixes/prefix remove the specified prefix

6.2 Data analytics module

This section shows an overview of the Data Analytics module API. The main goal of this API is to

provide to the developers tools related to data analytics, precisely statistics, optimization, data mining

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 21 of 35 Submission date: 18 September 2014

and machine learning algorithms. This API will be part of the IMPRESS Cloud and will be available

through a web service. Figure 7 shows the Data Analytics module API Overview.

Figure 7. Data Analytics API Overview.

There is a web service, which implements the Data Analytics module API, in order to allow developers
to have access to the Data Analytics module API. Deliverable 8.2 presents details about how the web

services URLs should be formatted in order to guarantee consistency among IMPReSS' different

modules. The second part of Figure 7 shows how the data analytics process is divided at the IMPReSS
Platform. Data Analytics entails the process of examining large amounts of data to uncover hidden
patterns, unknown correlations and other useful information that can be used to generate better

decisions. With big data analytics, data scientists and other users can analyze huge volumes of data

that conventional analytics and business intelligence solutions cannot do. This API offers four groups
of algorithms to analyze raw data: statistics, optimization, data mining and machine learning

algorithms. These groups are better depicted in Figure 8.

Figure 8. Data Analytics module API package structure.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 22 of 35 Submission date: 18 September 2014

The design of this API follows patterns from the Java Specification Request (JSR)[1] through the
creation of packages. Furthermore, data mining algorithms were taken from the scikit-learn library12,

statistics algorithms from pymc library13 and optimization algorithms from Clever Algorithms[2].

Before describing data mining, optimization and statistics, there are other packages that compose the
Data Analytics module API. The first one is the impress.util package that consists of some utility

classes, which may be used to assist the other packages, for example, a class can be used to call a
method to format data. The second package is the impress.controllerwebservice that has classes

to expose the Data Analytics module API through a web service and makes it available to developers.
Deliverable 8.2 has more details about the web service specification. The last package is the

impress.preprocessing that consists of several classes to allow data preprocessing work before any

data analytics algorithm is called. Impress.preprocessing algorithms are shown in Table 1. The
preprocessing step may involve several strategies, for instance, when there are data with missing
features, imputation methods should be employed to substitute missing values with meaningful

estimates in order to allow machine-learning algorithms to be used. In addition, when data is available

in different scales, normalization and standardization preprocessing should be used to allow the
effective use of learning methods based on distance measures, such as Euclidian distance.

Table 1: Preprocessing algorithms.

Classes Description

Binarizer([threshold, copy])
Binarize data (set feature values to 0 or 1) according to a

threshold

Imputer([missing_values, ...]) Imputation methods for completing missing values

KernelCenterer Center a kernel matrix

LabelBinarizer([neg_label, ...]) Binarize labels in a one-vs-all fashion

LabelEncoder Encode labels with value between 0 and n_classes-1.

MinMaxScaler([feature_range, copy])
Standardizes features by scaling each feature to a given

range.

Normalizer([norm, copy]) Normalize samples individually to unit norm

StandardScaler([copy, ...])
Standardize features by removing the mean and scaling to

unit variance

binarize(X[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix

label_binarize(y, classes[, ...]) Binarize labels in a one-vs-all fashion

normalize(X[, norm, axis, copy]) Normalize a dataset along any axis

scale(X[, axis, with_mean, ...]) Standardize a dataset along any axis

Figure 9 consists of several data mining and machine learning algorithms, as well as metrics that each
group uses to evaluate their algorithms. These algorithms and metrics will be explained below:

 impress.datamining.classification: This sub-package defines classes that implements

classification algorithms.

 impress.datamining.association: This sub-package defines classes that implements

association algorithms.

 impress.datamining.cluster: This sub-package defines classes that implements clustering

algorithms.

 impress.datamining.regression: This sub-package defines classes that implements

regression algorithms.

 impress.datamining.classification.metrics: This sub-package defines metrics classes to

evaluate data mining classification algorithms.

 impress.datamining.association.metrics: This sub-package defines metrics classes to

evaluate association algorithms.

12 http://scikit-learn.org/stable/index.html
13 http://pymc-devs.github.io/pymc/

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html#sklearn.preprocessing.Imputer
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html#sklearn.preprocessing.KernelCenterer
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html#sklearn.preprocessing.LabelBinarizer
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.binarize.html#sklearn.preprocessing.binarize
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.label_binarize.html#sklearn.preprocessing.label_binarize
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html#sklearn.preprocessing.scale

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 23 of 35 Submission date: 18 September 2014

 impress.datamining.cluster.metrics: This sub-package defines metrics classes to evaluate

data mining clustering algorithms.

 impress.datamining.regression.metrics: This sub-package defines metrics classes to

evaluate data mining regression algorithms.

Figure 9. Data Mining package structure.

The algorithms of each package cited above are shown in the tables bellow:

Table 2. Classification algorithms.
Classes Description

RandomForestClassifier([...])
Ensemble of decision tree classifiers generated by

random forest.

RandomTreesEmbedding([...]) Ensemble of totally random trees.

AdaBoostClassifier(...[, criterion])
Ensemble of classifiers generated by the AdaBoost

ensemble generation method.

GradientBoostingClassifier([loss, ...])
Ensemble of classifiers generated by the Gradient

Boosting method.

GaussianHMM([n_components, ...])
The Hidden Markov Model classifier generated with

Gaussian emissions

GaussianNB
The Naive Bayes Classifier generated with Gaussian

functions

NearestCentroid([metric, ...]) The prototype-based Nearest centroid classifier.

SVC([C, kernel, degree, gamma, coef0, ...])
The Support Vector Machines classifier C-Support

Vector Classification for nonlinear separated

problems.

LinearSVC([penalty, loss, dual, tol, C, ...]) Linear Support Vector Classification for linear

separated problems.

DecisionTreeClassifier([criterion, ...]) A decision tree classifier.

Table 3. Evaluation metrics for classification algorithms.
Classes Description

accuracy_score(y_true, y_pred[, ...]) Accuracy classification score.

average_precision_score(y_true, y_score) Compute average precision (AP) from prediction scores

classification_report(y_true, y_pred) Build a text report showing the main classification metrics

confusion_matrix(y_true, y_pred[, ...]) Compute confusion matrix to evaluate the accuracy of a

classification

jaccard_similarity_score(y_true, y_pred) Jaccard similarity coefficient score

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomTreesEmbedding.html#sklearn.ensemble.RandomTreesEmbedding
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.hmm.GaussianHMM.html#sklearn.hmm.GaussianHMM
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html#sklearn.metrics.average_precision_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html#sklearn.metrics.classification_report
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html#sklearn.metrics.jaccard_similarity_score

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 24 of 35 Submission date: 18 September 2014

log_loss(y_true, y_pred[, eps, ...]) Log loss, aka logistic loss or cross-entropy loss.

precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability

thresholds

precision_score(y_true, y_pred[, ...]) Compute the precision

recall_score(y_true, y_pred[, ...]) Compute the recall

roc_auc_score(y_true, y_score) Compute Area Under the Curve (AUC) from prediction

scores

Table 4. Clustering algorithms.
Classes Description

DBSCAN([eps, min_samples, metric, ...]) Perform DBSCAN clustering from vector array

or distance matrix.

KMeans([n_clusters, init, n_init, ...]) The simple K-Means clustering algorithm

MiniBatchKMeans([n_clusters, init, ...]) Mini-Batch K-Means clustering algorithm

MeanShift([bandwidth, seeds, ...]) MeanShift clustering algorithm

Ward([n_clusters, memory, ...]) Ward hierarchical clustering: constructs a tree

and cuts it.

NearestNeighbors([n_neighbors, ...])
Unsupervised learner for implementing

neighbor searches.

 Table 5. Evaluation metrics for Clustering algorithms.

Classes Description

adjusted_mutual_info_score(...) Adjusted Mutual Information between two clusters

adjusted_rand_score(labels_true, ...) Rand index adjusted for chance

completeness_score(labels_true, ...)
Completeness metric of a cluster labeling given a ground

truth

homogeneity_score(labels_true, ...)
Homogeneity metric of a cluster labeling given a ground

truth

mutual_info_score(labels_true, ...) Mutual Information between two clusters

normalized_mutual_info_score(...) Normalized Mutual Information between two clusters

consensus_score(a, b[, similarity]) The similarity of two sets of biclusters.

Table 6. Regression algorithms.
Classes Description

RandomForestRegressor([...]) Ensemble of random forest regressor.

AdaBoostRegressor(...[, criterion, ...]) Ensemble based on AdaBoost regressor.

GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.

IsotonicRegression([y_min, y_max, ...]) Isotonic regression model.

LinearRegression([...]) Ordinary least squares Linear Regression.

LogisticRegression([penalty, ...]) Logistic Regression classifier.

RandomizedLogisticRegression([...]) Randomized Logistic Regression

KNeighborsRegressor([n_neighbors, ...]) Regression based on k-nearest neighbors.

RadiusNeighborsRegressor([radius, ...]) Regression based on neighbors within a fixed radius.

SVR([kernel, degree, gamma, coef0, tol, ...]) epsilon-Support Vector Regression.

 Table 7. Evaluation metrics for Regression algorithms.
Classes Description

explained_variance_score(y_true, y_pred) Explained variance regression score function

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html#sklearn.metrics.precision_recall_curve
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn.metrics.precision_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.Ward.html#sklearn.cluster.Ward
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#sklearn.metrics.adjusted_rand_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html#sklearn.metrics.completeness_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html#sklearn.metrics.mutual_info_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html#sklearn.metrics.normalized_mutual_info_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.consensus_score.html#sklearn.metrics.consensus_score
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.isotonic.IsotonicRegression.html#sklearn.isotonic.IsotonicRegression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RandomizedLogisticRegression.html#sklearn.linear_model.RandomizedLogisticRegression
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 25 of 35 Submission date: 18 September 2014

mean_absolute_error(y_true, y_pred) Mean absolute error regression loss

mean_squared_error(y_true, y_pred) Mean squared error regression loss

r2_score(y_true, y_pred) R² (coefficient of determination) regression score function.

Package impress.optimization consists of several optimization algorithms, such as Tabu Search,

Evolutionary Algorithms and Particle Swarm Optimization, as depicted in Figure 10 and explained
below.

 impress.optimization.stochastic: This sub-package defines classes that implements

stochastic optimization algorithms.

 impress.optimization.evolutionary: This sub-package defines classes that implements

evolutionary optimization algorithms.

 impress.optimization.swarm: This sub-package defines classes that implements swarm

optimization algorithms

The algorithms of each of these packages are shown in the tables bellow:

Figure 10. Data analytics module optimization package structure.

Table 8. Stochastic algorithms.

Classes Description

tabusearch(<parameters>)
Tabu Search is a Global Optimization algorithm and a

Metaheuristic or Meta-strategy for controlling an embedded

heuristic technique.

randomsearch(<parameters>)
Random search belongs to the elds of Stochastic Optimization

and Global Optimization.

scattersearch(<parameters>)
Scatter search is a Metaheuristic and a Global Optimization

algorithm.

Table 9. Evolutionary algorithms.
Classes Description

geneticalgorithm(<parameters>) The Genetic Algorithm is an Adaptive Strategy and a

Global Optimization technique.

nsga(<parameters>)
The Non-dominated Sorting Genetic Algorithm is a

Multiple Objective Optimization (MOO) algorithm and is

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 26 of 35 Submission date: 18 September 2014

an instance of an Evolutionary Algorithm from the field of

Evolutionary Computation.

spea(<parameters>)

Strength Pareto Evolutionary Algorithm is a Multiple

Objective Optimization (MOO) algorithm and an

Evolutionary Algorithm from the field of Evolutionary

Computation.

Table 10. Swarm algorithms.
Classes Description

pso(<parameters>) Particle Swarm Optimization belongs to the field of Swarm

Intelligence and Collective Intelligence and is a sub-field of

Computational Intelligence.

beesalgorithm(<parameters>)
The Bees Algorithm beings to Bee Inspired Algorithms and the

field of Swarm Intelligence, and more broadly the elds of

Computational Intelligence and Metaheuristics.

antcolonysystem(<parameters>)
The Ant Colony System algorithm is an example of an Ant

Colony Optimization method from the field of Swarm

Intelligence, Metaheuristics and Computational Intelligence.

Package impress.statistics consists of several statistics algorithms, such as orders, average, variance

and correlating, as depicted in Figure 11 and explained below.

Figure 11. IMPRESS statistic package structure.

 impress.statistics.orders: This sub-package defines classes that implement the extraction

of basics information, i.e. minimum and maximum.

 impress.statistics.averagevariances: This sub-package defines classes that implement

the extraction of average and variances of the data.

 impress.statistics.correlating: This sub-package defines classes that implement the

extraction of correlation coefficients.

The algorithms of each package are shown in the tables bellow:

Table 11. Order algorithms.
Classes Description

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 27 of 35 Submission date: 18 September 2014

amin(a[, axis, out, keepdims])
Returns the minimum of an array or minimum along an

axis.

amax(a[, axis, out, keepdims]) Returns the maximum of an array or maximum along an

axis.

nanmin(a[, axis, out, keepdims]) Returns minimum of an array or minimum along an axis,

ignoring any NaNs.

nanmax(a[, axis, out, keepdims]) Returns the maximum of an array or maximum along an

axis, ignoring any

ptp(a[, axis, out]) Range of values (maximum - minimum) along an axis.

percentile(a, q[, axis, out, overwrite_input]) Compute the qth percentile of the data along the specified

axis.

Table 12. Average/Variance algorithms.
Classes Description

median(a[, axis, out, overwrite_input]) Computes the median along the specified axis.

average(a[, axis, weights, returned]) Computes the weighted average along the specified

axis.

mean(a[, axis, dtype, out, keepdims]) Computes the arithmetic mean along the specified axis.

std(a[, axis, dtype, out, ddof, keepdims]) Computes the standard deviation along the specified

axis.

var(a[, axis, dtype, out, ddof, keepdims]) Computes the variance along the specified axis.

nanmean(a[, axis, dtype, out, keepdims]) Computes the arithmetic mean along the specified axis,

ignoring NaNs.

nanstd(a[, axis, dtype, out, ddof, keepdims]) Computes the standard deviation along the specified

axis, while

nanvar(a[, axis, dtype, out, ddof, keepdims]) Computes the variance along the specified axis, while

ignoring NaNs.

Table 13. Correlating algorithms.
Classes Description

corrcoef(x[, y, rowvar, bias, ddof]) Returns correlation coefficients.

correlate(a, v[, mode, old_behavior]) Cross-correlation of two 1-dimensional sequences.

cov(m[, y, rowvar, bias, ddof]) Estimates a covariance matrix, given data.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html#numpy.amin
http://docs.scipy.org/doc/numpy/reference/generated/numpy.amax.html#numpy.amax
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmin.html#numpy.nanmin
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmax.html#numpy.nanmax
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ptp.html#numpy.ptp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile
http://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html#numpy.median
http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std
http://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmean.html#numpy.nanmean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanstd.html#numpy.nanstd
http://docs.scipy.org/doc/numpy/reference/generated/numpy.nanvar.html#numpy.nanvar
http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html#numpy.correlate
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html#numpy.cov

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 28 of 35 Submission date: 18 September 2014

7 Context Management

Context-aware systems can be defined as systems that are able to adapt their operations to the current

context conditions without explicit user intervention[3]. The context life cycle is composed of four
phases, which are context acquisition, context modelling, context reasoning and context distribution.

The essential part of context aware applications is the ability of the applications to infer the context
based on sensor data and the context model as well as applying the necessary actions.

Different context models have been proposed and tested, such as key-value, markup, graphical, object
oriented and ontology-based models. Among them, the latter is considered to have high and formal

expressiveness and to allow the use of ontology reasoning techniques, although with lower

performance.

IMPReSS aims to support inexperienced developers by providing a visual tool, named IoTLink, for
creating context aware applications rapidly. Using IoTLink, developers could define the relationships

among sensors, actuators, and their semantics in terms of application domain objects. IoTLink will then

generate the necessary software artefacts consisting the representation of the physical domain objects.
These software representations are linked to the corresponding sensors and actuators that are able to

determine the context of the domain objects. This approach encapsulates the complexity of
communicating with sensors and actuators and allows developers to interact with the domain objects

directly as illustrated in Figure 12.

Figure 12. Abstracting sensors and actuators through domain objects.

7.1 IoTLink Implementation

There has been some efforts to define IoT Meta models which suggest how physical objects could be

represented by software services e.g. Ebbits14 an European research project aims at developing IoT
platform for business applications, IoT-A, a European research project aim at standardizing IoT

architecture. IoT-A has investigated the different IoT architectures and conclude them as a IoT

Architecture Reference Model (ARM)[4]. Figure 2 illustrates a simplification of the IoT-A Meta-model
showing that a physical object must be uniquely identifiable, has physical qualities that partly can be

sensed by sensors, and has some capabilities or services that could affect the environment. Physical
objects can be represented by Virtual objects, which act as their proxy allowing applications to retrieve

their states and consume their services.

14 www.ebbits.eu

Applications

Abstraction through
Virtual Objects

Sensor & Actuator

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 29 of 35 Submission date: 18 September 2014

Figure 13. IoT Meta model based on the IoT-A project [5].

Based on this conception, we designed IoTLink that allows developers to compose software

representation of physical objects through a model driven approach. The model contains a domain
model representing the “Things” and their attributes. The attributes can be linked to data sources such

as physical sensors, web services that are able to determine their actual states. Using this model,
software artefacts can be generated and used as proxies for the “Things”. Determining the actual states

of the “Things” from sensor values may not work straightforward since sensor hardware has physical

limitations and may contain measurement noise. Moreover, sometimes several type of sensors must be
combined to be able to determine the state of physical objects. For instance to measure emotion of a

user, several bio-readings such as respiration rate, heart rates, skin conductance may be collected and
through intelligent algorithms, the system could conclude the stress level[6]. Thus, in within IoTLink,

we need to introduce sensor fusion modules, which can be used to pre-process and fuse sensor readings

before these values can represent the actual state of a physical object. As an example, when a power
sensor is used to measure the energy consumption of a lamp, the sensor values must be calibrated

depending on operating temperature. Thus, the sensor values are process by a sensor fusion module
containing the calibration algorithm then the result can be assign as the actual energy consumption of

the lamp.
A software representation of physical objects must provide an interface or a specific data format that

can be accessed and processed by external applications. Therefore, we introduce output components

that can be used to serialize the state of the physical objects through different data format and service
protocols e.g. database entries, XML that can be accessed from a REST based service. Due to these

considerations we define a Meta model (published in [7]) as a ground work for the development of
IoTLink. The Meta-model consist of the main components that the users must define in their application

model. First, the users must define Virtual Objects to represent “Things”. Virtual objects may have

properties and functions as well as classes to group them. The properties can be linked to connections,
which represent the link to sensors. Several concrete connections are implemented and derived from

the connections class. The link between connections and propertied could go through concrete sensor
fusion components. The virtual objects can be serialized through output components. The output

components also allow external applications to interact with the virtual objects i.e. by consuming their
services.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 30 of 35 Submission date: 18 September 2014

App

Class

Connection

Property

Function

VirtualObject

Fusion

Output

ArduinoSerial MQTTSub SOAPConn RESTConn

VotingFuse MinMax Average EsperEngine

Relational
Database

SOAPOutput RuleEngine

Figure 14. Logical view of the EMF meta-model

After the Meta model has been defined, IoTLink was developed by following a human centered
approach. First, a low fidelity wireframe was developed using Balsamiq15 and validated by 8 users using

a cognitive walkthrough[8] approach to identify usability problems. Based on this initial feedback, we
improved the user interface design and the Meta-model. After the wireframe design was quite mature,

a high fidelity prototype of IoTLink was built and evaluated. We have published the result of this first
iteration in[7].

We chose to implement the IoTLink as an eclipse plugin since Eclipse already offers many features

required to support the productivity of a system development that are required for extending the
generated code.

The IoTLink’s development extensively explored the Eclipse Modeling Project16, which already provide
frameworks for developing a custom modeling language, a model transformation, and a code generator.

After a careful investigation the following plugins were selected for developing IoTLink
 Eclipse Modeling Framework (EMF) to define the meta model of the modeling language
 Eclipse Graphical Modeling Framework (GMF) to create the graphical editor
 Extended Editing Framework (EEF) to create the property editor for the EMF elements
 Acceleo to create a model transformation from the EMF objects into Java code.

The Meta model is defined using a simplified UML called EMFCore (ECore) which is a standard model

required by EMF17. Then, the ECore model is derived by the GMF to define the Graphical definition

model, called “gmfgraph”, which determines the visual elements to be displayed on the main anvas, the
relationships and constrains between diagram, and the diagrams’ behavior. Further, GMF creates a

Tooling definition model, called “gmftool”, which defines the notations to be displayed on the palette
menu. The gmfgraph and gmftools are then mapped in a mapping configuration, called “gmfmap” which

is used by GMF to decide on what notation should be shown on the main canvas when an item from

the palette menu is dragged and dropped to the main canvas. To create a more visually attractive

15 www.balsamiq.com
16 www.eclipse.org/modeling/
17 http://www.eclipse.org/modeling/emf/?project=emf

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 31 of 35 Submission date: 18 September 2014

property sheet for each diagram, we use the EEF plugin. EEF derives the Meta model to generate an
EEF model. An EEF model defines the widgets used in the property sheet of each notation.

As depicted in Figure 15, IoTLink consists of four main containers:
1. The connection container holds the components to communicate with sensors or other data

sources.
2. The sensor fusion container holds the modules to process the sensor values before they are

assigned to the properties of the virtual objects.
3. Virtual Object container contains the representation of “Things”.
4. The output container defines how the representation of the “Things” can be accessed by

external applications.
The grouping in the containers is aligned with the proposed Meta model shown in Figure 14.

Figure 15. Latest iteration of the IoTLink.

7.1.1 The connection components

The connection components are responsible for building connection to a data source, which could be
physical devices, sensor networks, or software data source such as web services. Currently, we have

implemented several components that are widely used for IoT prototyping such as:
 ArduinoSerial enables communication with Arduino (www.arduino.cc) boards. Arduino has been

widely used for rapid hardware prototyping.
 SOAPInput enables connection to a SOAP based web service, which are widely used among

various enterprise applications and recently has been proposed for devices (DPWS). The
SOAPInput uses an XPath (www.w3.org/TR/xpath/) expression to parse the incoming soap
objects.

 RESTInput provides a simple and lightweight alternative to SOAP based web service. RESTInput
allows the users to poll a resource on a specific URL. It also uses XPath and JSONPath to parse
the incoming XML and JSON respectively.

 OPCClient enables the communication to industrial devices through an OPC middleware, which is
widely used in industrial environment. The OPCClient component can be configured to poll an
OPC variable by providing tag of the variable.

 MQTTInput, this connection receives data from an MQTT broker[9]. MQTT is an emerging
communication standard for IoT that adopts publish subscribe paradigm. MQTT features a small
footprint and three level of QoS, which makes it ideal to run on devices with limited resources
and unreliable network with low bandwidths.

7.1.2 Defining Complex Event Processing

For processing and combining sensor data, IoTLink includes a complex event processing (CEP) engine

called Esper (esper.codehaus.org). It requires users to define how sensor streams should be processed
by the engine in a query language called Event Processing Language (EPL). EPL Statements may consists

of one or more views. Views may represent windows of stream as well as statistics of streams. For
instance an EPL statement such as “win:length(5)” contains a view of sliding window with the length of

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 32 of 35 Submission date: 18 September 2014

5. ESPER also allows aggregation and grouping using “group by” and “having” clause, which is useful
to perform calculations of values based on particular group.

Figure 16. A network of sensor fusion modules

Sensor fusion modules can be combined as a network of processes when necessary as depicted in

Figure 16. This allows data to be processed through a network of modular algorithms until the desired
information is obtained.

7.1.3 Defining Virtual Object Component

In the virtual object container, developers are able to define the representation of the physical objects

belonging to two different types. First, StaticObject represents stationary relation between physical

objects and the sensors and actuators that observe them e.g. a room that has a temperature sensor
attached on the wall of the room can be represented by a static object. Second, objects that only have

temporary relations to the sensors e.g. occupants who move from one room to another can be observed
by the sensors located nearby.

Similar to object oriented programming, each virtual object must have a class that defines its structure.

The structure of a class includes properties and functions. Properties may have a type of primitive data
types such as int, float, double, String, boolean, byte or a type of another class. The latter ones are

called Complex Properties. These classes are defined in the TemplateContainer, which opens a separate
diagram when the users double click on it. When the classes are defined, on the main canvas, the users

could add concrete objects and assign a class to them. When a class is assigned, the structure of the
class is applied to the object. This is useful for maintaining structural changes to a large amount of

objects.

When a sensor is used to observe a specific property of a physical object, the developer can model this
using IoTLink by linking the relevant input component to the property of the virtual object. This mapping

is used by the code generator to route the values of the corresponding sensor to the object being
observed. When several sensors are required to determine a specific property of a physical object, it

can be modelled by linking the respective input components to a sensor fusion component, which then

linked to the virtual object. The objects may also contain functions that can be mapped to actuators,
which are used by the generated code to forward the function calls to the relevant actuators.

7.1.4 Output Components

The output components define how the virtual objects should be exposed to the external applications.

We have implemented several components including storing the states of the objects to a relational
database, exposing the objects as SOAP, or resources through REST, publishing the objects to MQTT

broker, and sending the objects to a Drools rule engine. As these components work differently, each

output results in different behavior for instance the SOAP based Web service provides a method to get
different objects based on their classes. e.g. if there is a static object with a name of “object1” and has

a type of “Class1”, the output component will generate a Web Service method named getClass1(String
Id). To retrieve object1, users could invoke getClass1(“object1”). The REST component represents the

virtual objects as web resources that can be retrieved through specific URLs. For instance, given an

object with an id of “object1” and class of “Class1” and the application is run on the local host, the REST
component generates the following URLs:

http://localhost/virtualobject/ class1/object1.

Moreover, the REST component generates parameterized URLs to invoke the functions of the virtual
objects e.g.:

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 33 of 35 Submission date: 18 September 2014

http://localhost/virtualobject/class1/object1?setOn =true.

The database component uses Eclipselink (www.eclipse.org /eclipselink/), an implementation of Java
Persistence API (JPA) to interact with a database engine. The generated classes are annotated and

automatically mapped to tables by Eclipselink. When the state of the object has changed, the snapshot
is stored in the history table. The MQTTOutput component provides an event publisher to publish the

state of the virtual objects through an MQTTevent broker [10]. The publisher could be configured to
publish events with the two topic formats. First, a flat structure topic that only includes the class of the

object, the object id, and the property as follows:

baseTopic/virtualobject/[ObjectClass]/[Obj.Id]/[PropName]

The topic structure allows developers to subscribe all events based on the class of the virtual objects

using wildcard topic. The second format follows a hierarchical structure containing the objects id as

shown by the following example:

baseTopic/virtualobject/[Obj.Id1]/[Obj.Id2]/…./[PropName]

Where the subsequent object is a child object of the prior object. The second topic pattern allows the
application to subscribe to all events belong to an object and its children.

7.1.4.1 Drools rule engine

Context aware applications are required to perform an actuation based on the states of the physical
objects. This can be implemented with different approaches such as hard coding the application logic

using a programming language. To increase the flexibility of the applications, one could parameterize
the variables that change frequently in the future. However, this approach is still not sufficiently flexible

for extreme cases where the logic of the applications could change quite frequently. In context of
research environment where various application logics must be evaluated, this happens very likely. E.g.

to optimize energy consumptions in a building, several control strategies must be evaluated.

Rule engines are designed to decouple business logic from the rest of the applications enabling the

business rules to change without even restarting the applications, which is suitable for addressing this
requirement. Many rule engines are used in business environments. These engines are categorized

based on how they execute the rules. The Forward Chaining engines execute consequence based on

conditions expressed in the rule which implies “IF then ELSE” type of logic. The Backward Chaining
engines, also called goal oriented, try to resolve the facts that fit a goal. Drools [11] is able to perform

reasoning using both approaches and draw conclusion based on the facts and rules fed to the engine.
Drools allows the rules to be defined in different language dialects. The native Drools dialect is called

mvel, which follows a simple structure as depicted in Figure 17.

Figure 17. Drools rule language format

Drools evaluate the rules when new facts are inserted to the engine or when the facts have changed.

During the rules evaluation when the conditions of the rules are met, the consequence part of the rule
is executed. If conditions of several rules are met, Drools apply a conflict resolution strategy by changing

the order of executions based on the salience value of the rules. This requires developers to provide
the priority of the rules when they define the rules.

rule "name"
 attributes
 when

 LHS (conditions)
 then
 RHS (consequences)
end

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 34 of 35 Submission date: 18 September 2014

The rules could be stored in a database and maintained using Drools Guvnor, which offers a web, based
interface for defining and editing rules as depicted in Figure 18. The web-based interface is able to

provide the users with a domain specific language (DSL) which can be tailored close to a natural

language. However, a mapping between the phrases used in the DSL and the rule language must be
provided by the developers.

The DroolsOutput component provided by IoTLink can be configure to retrieve the rules from a Guvnor
Database and instantly apply any rule changes when the generated applications are still running. This

allows different control strategy to be investigated during the prototyping phase. Enabling this feature,
the DroolsOutput component must be configured with the URL of the Guvnor. When the Java code is

generated, the code generator also generates a jar file containing the domain model of the application

prototype that could be imported to the Guvnor to enable type safe feature when defining the rules.

Figure 18. Defining rules responding to the state of the physical objects.

7.1.5 Generated Application

IoTLink is able to generate Java artefacts based on user-defined model. For each data source, sensor

fusion and output component a Java class is generated. These classes are used by the controller class

named MainApp, which initializes the concrete objects. The MainApp holds the link between domain
objects, data sources, sensor fusion modules, and output. When data source objects receive data from

physical objects, they are pushed to the sensor fusion modules, to which they are connected. The data
could go through several levels of fusion depending on how the sensor fusion components are modeled.

Once the sensor data is processed, it is pushed to the MainApp. If the sensor data does not need to be
processed through sensor fusion modules, the data is pushed directly to the MainApp. Since the MainApp

maintains the link between modules, it is able to assign these data to the corresponding virtual objects.

When the virtual objects are updated, the output components are notified so that they can push the
data if necessary e.g. the Database could persist the changes, MQTT broker could notify the subscribers,

and the Drools could update the objects in its knowledge base. This is however not required by the
output components that must be pulled e.g. SOAP- and RESTOutput.

IMPReSS D7.2.1. Integrated First Proof of Concept IMPRESS platform

Document version: 1.0 Page 35 of 35 Submission date: 18 September 2014

8 References

1 Hornick, M.: ‘Java Specification Request 73: Java Data Mining (JDM)’, JSR-73 Expert Group, 2004

2 Brownlee, J.: ‘Clever algorithms: nature-inspired programming recipes’ (Jason Brownlee, 2011. 2011)

3 Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D.: ‘Context aware computing for the internet of

things: A survey’, Communications Surveys & Tutorials, IEEE, 2014, 16, (1), pp. 414-454

4 Bauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettsträter, A., Stefa, J., and Walewski, J.W.: ‘IoT Reference

Model’: ‘Enabling Things to Talk’ (Springer, 2013), pp. 113-162

5 IoT-A: ‘Deliverable D1.3 – Updated reference model for IoT ’, in Editor (Ed.)^(Eds.): ‘Book Deliverable D1.3 –

Updated reference model for IoT ’ (2012, v1.5 edn.), pp.

6 Haag, A., Goronzy, S., Schaich, P., and Williams, J.: ‘Emotion recognition using bio-sensors: First steps towards

an automatic system’: ‘Affective dialogue systems’ (Springer, 2004), pp. 36-48

7 Pramudianto, F., Indra, I.R., and Jarke, M.: ‘Model Driven Development for Internet of Things Application

Prototyping’, in Editor (Ed.)^(Eds.): ‘Book Model Driven Development for Internet of Things Application

Prototyping’ (Knowledge Systems Institute Graduate School, 2013, edn.), pp.

8 Spencer, R.: ‘The streamlined cognitive walkthrough method, working around social constraints encountered in

a software development company’, in Editor (Ed.)^(Eds.): ‘Book The streamlined cognitive walkthrough

method, working around social constraints encountered in a software development company’ (ACM, 2000,

edn.), pp. 353-359

9 Locke, D.: ‘MQ Telemetry Transport (MQTT) V3. 1 Protocol Specification’, IBM developerWorks Technical

Library], available at http://www. ibm. com/developerworks/webservices/library/ws-mqtt/index. html, 2010

10 Hunkeler, U., Truong, H.L., and Stanford-Clark, A.: ‘MQTT-S—A publish/subscribe protocol for Wireless

Sensor Networks’, in Editor (Ed.)^(Eds.): ‘Book MQTT-S—A publish/subscribe protocol for Wireless Sensor

Networks’ (IEEE, 2008, edn.), pp. 791-798

11 Bali, M.: ‘Drools JBoss Rules 5.0 Developer's Guide’ (Packt Publishing Ltd, 2009. 2009)

http://www/

