

(FP7 614100)

D7.3.1 Initial Design and Implementation of the Configuration

and Composition Manager

2014-08-01 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 2 of 15 Submission date: 2014-08-01

Document control page

Document file: D7.3.1 Initial Design and Implementation of the Configuration and

Composition Manager_v1.0.docx

Document version: 1.0

Document owner: Enrico Ferrera (ISMB)

Work package: WP7 – IDE Framework for Model-driven development

Task: T7.3 Unified configuration management API

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Enrico Ferrera 2014-07-20 Initial structure of the document.

Contributions in all sections.

0.2 Davide Conzon 2014-07-22

0.3 Enrico Ferrera 2014-07-25 Document review and minor

modifications

0.4 Davide Conzon 2014-07-27 Document review and minor

modifications

1.0 Enrico Ferrera 2014-08-01 Deliverable ready to be submitted

Internal review history:

Reviewed by Date Summary of comments

Ferry Pramudianto 2014-07-31 Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 3 of 15 Submission date: 2014-08-01

Index:

1. Executive summary .. 4

2. Introduction... 5

3. Configuration and Composition Framework Architecture 6

3.1 Context .. 6
3.2 Architecture description ... 7

4. Configuration and Composition Framework API 9

4.1 Targets concerning creating visibility of the project 9
4.2 Composition and Configuration Agent API ... 9

5. Examples ... 11

5.1 Composition operations .. 11
5.2 Configuration operations ... 12

6. Summary & Conclusion ... 13

7. Bibliography... 14

List of Figures and Tables .. 15

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 4 of 15 Submission date: 2014-08-01

1. Executive summary

This document describes the role and architecture of the Configuration and Composition Framework

(CCF). Moreover, APIs for interaction with CCF are described.

The deliverable is organized as follow: in Section 2 the need and concept of provisioning is

introduced and defined. Section 3 describes the CCF architecture, specifying which stakeholder this

framework is intended to apply to. In Section 4, API operations are described. Finally, in section 5,

are shown some example of usage of the CCF.

Deliverable D7.3.1 actually consists in the first prototypical implementation of the CCF, for this

reason the document has to be considered a compendium of the software and consequently the

number of pages have been kept restricted.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 5 of 15 Submission date: 2014-08-01

2. Introduction

During the last years, much research has been carried out around the concept of Internet of Things

(IoT). The holistic interaction among entities such as objects, systems, services and people, as

prescribed by the IoT paradigm, provides the infrastructure for development of complex platforms

enabling the pursuit of smarter environments and society. A plethora of research projects focus on new

and advanced platforms providing more and more smart features for many different purposes, e.g.

sustainable buildings more advanced power grids, more efficient logistics, e-health, etc.

IMPReSS project aims at realize a systems development platform (SDP) which enables rapid and cost

effective development of systems involving the Internet of Things and Services and at the same time

facilitates the interplay with users and external systems. The IMPRESS development platform is going to

be useful and usable for the realization of any kind of application that intend to embrace a smarter

society. Such kind of platform has to provide components, which are designed to be more general-

purpose possible. In spite of the generic finality, existing IoT platforms are often designed to reach

specific objectives and they lack of an easy and customizable way for the provisioning of the whole

platform (the process of preparing and equipping a system to allow it to provide, new, services to its

users).

The provisioning process consists in configuration and composition of the different components of the

platform, in order to initialize them and establish how they have to work together, to set the correct

workflow of the platform. This is an important part to improve the ease of use of IoT platforms, but

often the developers not address it, during the design and implementation of these solutions.

The following parts of the document provide an overview of the current design and implementation of

the Configuration and Composition Framework. Further additions and refinements or modifications to

this component are expected in subsequent phases of the project.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 6 of 15 Submission date: 2014-08-01

3. Configuration and Composition Framework Architecture

3.1 Context

Figure 1, depicted in Deliverable D2.2.1 SDP Initial Architecture Report, shows the IMPReSS platform

architecture from a functional point of view.

Figure 1: Functional architecture

The orange modules are responsible for the provisioning of the platform. They have two main goals:

the first one is to allow the composition of the different modules in order to realize applications,

using them; the second one is to allow configuring the entire platform and the single modules. The

Composition GUI relies on the Composition Manager, which is responsible to perform the

provisioning tasks requested by the stakeholder, through the composition GUI.

D2.2.1 SDP Initial Architecture Report introduces the different stakeholders of the IMPReSS

platform, which for recap, are reported here in the following:

 Partner: The IMPReSS Partner who contributes to the development of the IMPReSS System

Development Platform (SDP). Partners considered here are the European ones - FIT, CNET,

IN-JET, ISMB, VTT – and the Brazilian ones - UFPE, UFAM, TAO, CHESF, ENG, UFABC.

IMPReSS Partners have a natural broader view of the internal components of the

architecture, because they need to put them to work together by orchestrating components

and dataflows.

 Developer: The Application Developer who uses the IMPReSS SDP to develop IMPReSS-

enabled Applications. Target applications are energy efficiency systems addressing the

reduction of energy usage and CO2 footprint, within the context of the Internet of Things

(IoT).

 Integrator: The Solution Integrator who installs, configures, deploys application, and

connects them to other external services and hardware components. Different people or

organizations may play the role of integrators. Integrators must have special interfaces (GUIs

actually, in different flavors, such as Web-based and smartphone/tablet apps) with the

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 7 of 15 Submission date: 2014-08-01

system, so that they are easily able to configure the system to operate under different

circumstances in different environments.

 Recipient: The Final Recipient, who is affected by the solution, such as university

professors, students and staff, employees of a company (with different skills and positions),

audience of a theater, or even house home owners. These people can interact with the

solution by means of different interfaces (web-based, apps) for configuring certain

parameters and receiving real time information.

The stakeholder mostly involved with the provisioning issues are the Developer, who combines

different modules and composes the specific logic flow, in order to realize the final application, and

the Integrator, who sets the parameters of the platform modules to make the system effective. To fit

these two different needs of the Developer and Integrator, the CCF allows dealing with the two

aspects of provisioning:

 Composition: i.e. interconnect different available components of the platform (e.g. service

proxies, data filtering and aggregation modules, decision support systems, etc.). In other

word, the composition aims to realize the application, defining, for each relevant platform

component available, from which other components it has to take the inputs and to give its

outputs. This stage defines the workflow of the application. This feature is used by the

platform Installers for defining connections among the different entities in order to

implement specific application logic. In fact, through the composition is possible to realize

the actual application to be executed.

 Configuration: this stage provides to each platform component involved in the realization

of the application (i.e. the ones interconnected through the composition stage) the values

for the correct behaviour of the applications. For instance, suppose we have interconnected,

through the composition stage, the output of a temperature sensor to a module that raises

an alert whenever the temperature exceeds a threshold. In this case, the configuration

stage is responsible for set parameters such as the sensing rate of the sensor temperature

and the threshold temperature at which the second module has to rise the alert. The CCF

shows to the platform Manager all the available services and entities, allowing to configure

the parameters of the entities of the overall platform.

These two different aspects of the provisioning issue has been considered for the design of the CCF

in order to satisfy the functional requirements from the two stakeholders.

3.2 Architecture description

The role of the CCF is to provide a unique and general way of preforming the provisioning of the

platform.

The architecture of the CCF is shown in Figure 2. This architecture is inspired by the SNMP one

(SNMP , 2014) and aims at performing the configuration and composition of hardware and software

resources, for the platform provisioning. The architecture of CCF consists of two levels, global and

local levels, and is mainly composed by two components:

 A Configuration and Composition Manager (CCM) at a global level.

 A Configuration and Composition Agent (CCA) at local level.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 8 of 15 Submission date: 2014-08-01

Figure 2: Configuration and Composition Framework architecture

The Configuration and Composition Manager is the module in charge of managing the configuration

and composition processes of the other modules into the platform; it works as an interface between

the GUI and the various components of the platform. The functionalities of CCM consist in the

following:

• Notifies the tools on the status of the components available in the middleware.

• Retrieves the configuration from the CCA, when required through a REST interface.

• Updates the configuration of the components through the CCA via REST.

CCM is responsible for the management of the composition stage. In order to do this, the CCF

leverages on the publish/subscribe paradigm (publish/subscribe, 2014), which allows the complete

decoupling of the various component. The details about how CCF uses this paradigm will be

provided in the section 5.1.

A CCA is associated with each component of the platform. It exposes get and set methods for the

configuration parameters of a specific component to the CCM. The CCA operates actually the

configuration commands coordinated by CCM. The association of an agent to each module makes

the system more expandable and scalable from the point of view of configuration issues. One CCA is

assigned for each component of the platform. CCA is responsible for:

• Register the component in the Configurations and Composition Manager.

• Handling the configuration parameters of the component.

Handling the interconnection of the components with each other, adding and removing input

sources.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 9 of 15 Submission date: 2014-08-01

4. Configuration and Composition Framework API

In this chapter are reported the operations that can be managed by the REST API exposed by the

CCM and CCA.

4.1 Targets concerning creating visibility of the project

4.2 Composition and Configuration Agent API

Operation Parameters Returns Description

register() Component identification

name

- Registers the component in the

manager when it is started.

notify() Component identification

name

Component status (available,

unavailable)

- Used to notify the configuration and

composition tools when a

component availability change (it

becomes available or unavailable).

getConfigurationForm()
Component identification

name

The parameters

that can be

configured in the

component.

This operation is used to get the list

of the parameters that can be

configured in the component (with

the current values).

setConfiguration() Component identification

name

ConfigurationForm

- Updates the configuration of the

component, setting the values

passed as parameter.

addInput() Component identification

name

Input identification

- Adds to the component a new input

source.

removeInput()

Component identification

name

Input identification

-
Removes from the component an

input source.

Operation Parameters Returns Description

getConfigurationForm() -

The parameters that can

be configured in the

component.

This operation is used to get the list of

the parameters that can be configured

in the component (with the current

values).

setConfiguration() configurationForm - Updates the configuration of the

component, setting the values passed

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 10 of 15 Submission date: 2014-08-01

as parameter.

addInput() Input identification - Adds to the component a new input

source.

removeInput() Input identification -
Removes from the component an input

source.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 11 of 15 Submission date: 2014-08-01

5. Examples

In this chapter are described some examples of the two different stages of the provisioning task: the

configuration and the composition.

5.1 Composition operations

A Graphical GUI, designed and implemented within task T7.4, is able to show a graphical

representation of all available components of the platform. The availability of components are

managed through the registration of a component within CCM and the notification of the component

to the GUI. The available components are those that may contribute to the realization of the final

application and can be connected among them, through graphical links. This GUI can be called

Composition tool.

Whenever is defined a link between two components of the platform, the addInput operation of CCM

is called. CCM will contact the correct CCA in order to ask it to subscribe itself to events/outputs

published by another components on a publish/subscribe node. The publish/subscribe node can be

created and managed by the CCM but external publish/subscribe services can also be leveraged.

Figure 3: Sequence scheme for composition

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 12 of 15 Submission date: 2014-08-01

5.2 Configuration operations

The same GUI used for the composition can be also used for the configuration of the modules. In

this case, when the user selects the module, its configuration form is retrieved by the CCM querying

the agent. The configuration form contains all the parameters that can be configured on the

component. The form will be presented to the user, which can insert the values in it. Finally, the

values inserted are sent to the agent (through the CCM), which sets them in the component

Figure 4: Sequence scheme for configuration

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 13 of 15 Submission date: 2014-08-01

6. Summary & Conclusion

In this deliverable, the current Composition and Configuration Framework (CCF) architecture and

features have been outlined. It manages the provisioning of the platform performing two different

stages: the composition of the application and its configuration.

This document presented a first design version of CCF, for next release the APIs are going to be

refined and/or extended. The Configuration and composition Agent API are intended to be part of

the interfaces exposed by the Service Proxy.

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 14 of 15 Submission date: 2014-08-01

7. Bibliography

publish/subscribe. (2014). Tratto da

http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
SNMP . (2014). Tratto da http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

IMPReSS D7.3.1 Initial Design and Implementation of the Configuration and Composition Manager

Document version: 1.0 Page 15 of 15 Submission date: 2014-08-01

List of Figures and Tables

Figure 1: Functional architecture .. 6
Figure 2: Configuration and Composition Framework architecture .. 8
Figure 3: Sequence scheme for composition ...11
Figure 4: Sequence scheme for configuration ..12

