
Document version: 1.0 Submission date: 28/11/2014

(FP7 614100)

D6.3 Context Management Framework Architecture and Design
of Context Templates

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Target Outcome: b) Sustainable technologies for a Smarter Society

http://www.cnpq.br/index.htm

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 2 of 30 Submission date: 28/11/2014

Document control page

Document file: d6.3_context_management_framework_architecture_v1.0.docx

Document version: 1.0

Document owner: Carlos Kamienski (UFABC)

Work package: WP6 – WP6 Software System Engineering and Context Management

Task: Task 6.2, Task 6.3, Task 6.4

Deliverable type: R (Report)

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Carlos Kamienski 01/11/2014 Initial Version

0.4 Gabriela de Oliveira 14/11/2014 Most content added in all sections

0.7 Carlos Kamienski 25/11/2014 First complete version ready

1.0 Carlos Kamienski 28/11/2014 Final version ready

Internal review history:

Reviewed by Date Summary of comments

Jussi Kiljander 27/11/2014 Minor grammar corrections. Few

comments about the context model and

architecture.

Ferry Pramudianto 27/11/2014 Approved with corrections

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 3 of 30 Submission date: 28/11/2014

Index:

1. Executive summary ... 4

2. Introduction .. 6
2.1 Purpose and context of this deliverable ... 6
2.2 Scope of this deliverable.. 6
2.3 Document Structure.. 7

3. The IMPReSS System Development Platform .. 8

4. Background ... 11
4.1 Context-aware Computing ... 11
4.2 Context Modelling ... 12

4.2.1 Object-Oriented Context Modelling .. 13
4.2.2 Ontology-based Context Modelling .. 14

4.3 Context Reasoning .. 14
4.3.1 Rule-based Context Reasoning ... 14
4.3.2 Ontology-based Context Reasoning ... 15

5. Context Entities and Templates ... 16
5.1 Entities, Relationships and Templates ... 16
5.2 Subject Template ... 16
5.3 Resource Template ... 16
5.4 Place Template ... 17
5.5 Fusion Template ... 17
5.6 Rule Template .. 17
5.7 Action Template ... 18
5.8 Activity Template.. 18
5.9 Notification Template .. 18

6. Context Management Framework Architecture 20
6.1 Design Choices ... 20
6.2 Context Manager Architecture .. 20
6.3 Implementation Guidelines .. 22
6.4 Context Manager Processing Steps ... 24

7. Conclusion ... 29

8. References .. 30

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 4 of 30 Submission date: 28/11/2014

1. Executive summary

IMPReSS aims at providing a Systems Development Platform (SDP) for enabling rapid development

of mixed critical complex systems involving Internet of Things and Services (IoTS). The
demonstration and evaluation of the IMPRESS platform will focus on energy efficiency systems

addressing the reduction of energy usage and CO2 footprint in public buildings. Application
developers will develop applications using the SDP for a variety of purposes, including energy

efficiency management.

In order to provide an efficient use of energy in buildings, the IMPReSS SDP will need to be context

aware, which means that it must know what happens inside the buildings so that opportunities to

save energy can be identified and effectively fulfilled. Context-aware systems are able to adapt their
operations according to the current conditions without any explicit user intervention. Based on our

research, we identify that the context life cycle composed of four phases including context
acquisition, context modelling, context reasoning, and context dissemination. The key components

of any context-aware system are the context model and the context reasoning approach, used in a

particular context-aware management system. In addition, context modelling and reasoning are
intrinsically related to each other and must be defined together. The choice of a context model is a

very important step in any context-aware system because it influences the whole lifecycle of the
system (e.g., productivity of the developers, the expressiveness of the system, performance).

Moreover, it also limits the choice of a context reasoning technique (e.g., logic based, statistical
inferences).

The IMPReSS SDP is divided into IDE and Middleware, where the IDE contains a series of GUI

modules and the middleware contains modules with background management responsibilities. The
Context IDE is a graphical tool for managing context information, allowing Developers to specify

which features of context-awareness they need in their applications, ranging from template
specification for smart entities and situations to context modelling and rule authoring. The Context

Manager encompasses all background software components that a typical context-aware middleware

offers to its users, such as context templates, context models, context reasoning engine, and
algorithms for sensor and data fusion. This document updates the Deliverable D2.2.1 (Kamienski et.

al 2014a) based on the most recent discussions and general understanding among IMPReSS
partners.

The work package 6 provides entities and templates for energy efficiency applications, which is

aimed at simplifying the developer’s tasks for modelling and programing the context-awareness
features in their applications. This document provides an update of deliverable D6.1 (Kamienski et

al. 2014b), based on the most recent developments of context model and reasoning. The design of
context templates is characterized by context entities, their relationships and their attributes, which

play a key role in the architecture of the Context Manager. Eight entities of typical scenarios for
context-aware management for making efficient use of energy in buildings have being identified and

each one generated a variety of templates: Subject, Resource, Place, Fusion, Rule, Action, Activity

and Notification. The last three ones are being introduced in this documented where the first five
ones have been identified in Deliverable D6.1 (Kamienski 2014b).

After introducing some background on the context-aware computing and up-to-date versions of the
IMPReSS Software Architecture and Entities/Templates, this document focuses on the Architecture

of the Context Manager, also known as Context Management Framework Architecture. The context

modelling in IMPReSS will be based on an object-oriented approach, and a rule-based approach will
be used for the context reasoning. The use of an object-oriented context modelling is due to its high

penetration and widespread use by the software development community, which makes its adoption
easier. Moreover, there exists already very mature underlying technology such as persistence

storage and rule engines that are designed based on object-oriented approach. This will reduce the
development efforts, as well as ensuring the maturity of the context management framework.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 5 of 30 Submission date: 28/11/2014

Given that object-oriented context modelling was chosen, the natural choice is to use a rule-based

reasoning, which is commonly used, and offers different existing tools that integrate well with
object-oriented programming languages. This architecture can be divided into two main planes

inside the IMPReSS Middleware, namely the control plane and the event plane. It also includes
modules that are in the IMPReSS Middleware Interface and in the Resource Adaptation Interface.

Some implementation guidelines are also presented, based on some literature research and hands-
on experience with existing Complex Event Processing, Rule Engines, protocols for the Internet of

Things (IoT), and related technology. Finally, in order to simplify the interworking of the Context

Manager components this documents sheds some light into the data flow and processing steps
involved in the process of analyzing sensor data and sending commands to actuators.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 6 of 30 Submission date: 28/11/2014

2. Introduction

2.1 Purpose and context of this deliverable

The aim of the IMPRESS project is to provide a Systems Development Platform (SDP), which enables

rapid and cost effective development of mixed criticality complex systems involving Internet of

Things and Services (IoTS) and at the same time facilitates the interplay with users and external
systems. The IMPRESS development platform will be usable for any system intended to embrace a

smarter society. The demonstration and evaluation of the IMPRESS platform will focus on energy
efficiency systems addressing the reduction of energy usage and CO2 footprint in public buildings,

enhancing the intelligence of monitoring and control systems as well as stimulating user energy

awareness.

The IMPReSS project aims at solving the complexity of system development platform (SDP) by

providing a holistic approach that includes an Integrated Development Environment (IDE),
middleware components, and a deployment tool. The main technical and scientific objectives of the

IMPRESS project are:

 Developing an Integrated Development Environment (IDE) to facilitate Model-Driven

Development of Smarter Society Services.

 Providing a Service-Oriented Middleware to support Mixed Criticality Applications on

Resource-Constrained Platforms.

 Developing easy-to-use and configurable tools for Cloud-based Data Analysis and

Context Management.

 Develop Network and Communication management solution to handle the heterogeneity

of Internet of Things.

 Creating efficient Deployment Tools for Internet of Things applications.

The project’s results will be deployed in the Teatro Amazonas Opera House as an attractive
showcase to demonstrate the potential of a smart system for reducing energy usage and CO2

footprint in an existing public building. Another deployment will be in the campus of the Federal

University of Pernambuco.

The present document is the output of Task 6.3 (Context Modelling Templates), whose main goal is

to define a context modelling technique and associated context reasoning approach to be used in
the IMPReSS project. It contains the specification for the architecture of the Context Manager whose

reference implementation will be presented in D6.4 (Implementation of Context Reasoning Engine).

As the core component of the context management framework, the context reasoning engine will
provide the context awareness services to the application. It processes the context model provided

by the application (and created through the tools included in the framework) and constantly
monitors the state of the smart entities. It utilises the sensor and data fusion services in order to

obtain the required information, and detects the occurrence of situations (i.e., specified states of a
given set of smart entities) defined within the context model.

2.2 Scope of this deliverable

In order to allow applications to make efficient use of energy in buildings, the IMPReSS Platform
must provide context-aware management features, so that automatic decisions can be made based

on existing context information coming from a variety of sources, including physical sensors,

calendars and business rules. The specification of the architecture for Context Management is a key
achievement for the IMPReSS project, since it will guide the further developments of the software

that will effectively provide context-aware features in the Platform.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 7 of 30 Submission date: 28/11/2014

This deliverable is aimed at providing a clear understanding the Context Management architecture

and puts it into the correct framework of the IMPReSS Software Architecture. Also, it is aimed at
contextualizing according to the state of the art in context modelling and reasoning techniques.

2.3 Document Structure

The reminder of this document is organized in four chapters.

 Chapter 3 presents the IMPReSS System Development Platform (SDP) as specified by a

former work within IMPReSS, which is based on two main modules, IDE and

middleware.

 Chapter 4 introduces the main concepts about context-aware computing, focusing on

the main techniques for context modelling and context reasoning.

 Chapter 5 define eight entities and their templates for context modeling of energy

efficiency scenarios, aimed at making it easier to understand, model and program the
context-awareness features of the IMPReSS project.

 Chapter 6 introduces the architecture for the Context Manager module of the IMPReSS

architecture, focusing on its main internal components and interactions with other

modules and with external actors, such as IDE modules. Also, guidelines for
implementation used in a preliminary implementation are provided, along with examples

of executing the event plane of the architecture.

 Chapter 7 presents some final remarks and the next steps.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 8 of 30 Submission date: 28/11/2014

3. The IMPReSS System Development Platform

IMPReSS Software Architecture adopts four views: Partner, Developer, Integrator and Recipient.
Figure 1 presents the interaction of the four views, the external components (hardware and

software) and the dataflow between stakeholders. Partners, Developers and Integrators have to deal
with Physical and Digital resources. The formers are hardware components, mainly sensors and

actuators, but also different types of equipment and appliances that may take part in IMPReSS-

enabled installations, such as air conditioners and heaters.

Figure 1 starts with the Partner’s View following a right-to-left direction dataflow. IMPReSS Partners

have the responsibility to perform and fulfill the activities comprised by the workpackages and tasks
listed in the DoW. Depending on the task, partners can use digital and physical resources to achieve

the goal of the IMPReSS project. In the end, the System Development Platform (SDP) will be
developed and used by Application Developers, showed in the Developer’s View. Developers also

must interact with physical and digital resources when developing their applications, which in turn

are used by the Solution Integrator. Integrators also configure physical resources and connect
external services (digital resources) to deploy ready-to-use solutions to the Final Recipient.

Recipients access the solution in order to take advantage of its features.

Figure 1 - IMPReSS Architecture Views

The IMPReSS software architecture, which is presented in Figure 2, has been introduced in IMPReSS

Deliverable D2.2.1 (Kamienski 2014a) from February 2014 and has been improved to reflect the

collaborative view of partners better. It is divided up into four views, where the Partner’s view is the
most complete one and therefore it is considered to represent the IMPReSS Architecture. The other

views are for the Application Developer, Solution Integrator and Final Recipient. Figure 2 shows that
the SDP is divided into IDE and Middleware, where the IDE contains a series of GUI modules and

the middleware contains modules with background management responsibilities. IMPReSS assumes

that data is stored somewhere in the cloud, using relational as well as NoSQL databases. Modules in
the IDE component of the IMPReSS Platform might have counterparts in the Middleware component

and they communicate through the Middleware API. The whole set comprised of Middleware and
IDE modules is called the IMPReSS Platform or IMPReSS SDP.

Regarding the need for both IDE and Middleware the current view is that whereas the Middleware
components are always needed in order to characterize the use of the IMPReSS Platform, the use of

the IDE components might be considered optional. In other words, since the Middleware

components offer their services through a well-defined API, other third party or tailor made GUI
modules may use IMPReSS services without necessarily using the IDE. Also, applications may

choose not to use all Middleware modules depending on the developer’s preferences. Middleware is
comprised of four main modules, which have counterparts in IDE that are related to each other. In

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 9 of 30 Submission date: 28/11/2014

addition, IDE has a specific module for allowing the design of interfaces using Model-Driven

Development. The IMPReSS Middleware API is comprised of the APIs of the other four middleware
modules, namely Context Manager API, Data Manager API, Resource Manager API and

Communication Manager API.

Figure 2 - IMPReSS SDP Architecture – Partner’s View – Version 2

The IMPReSS Platform IDE modules are:

 Composition GUI: A graphical tool for allowing Developers to interconnect the various

modules of the platform in a way that better fits the purpose and the needs of their
particular applications. This module is based on Model-Driven Development (MDD), a

software engineering approach where developers create technology-agnostic models using
high levels of abstraction.

 Context GUI: A graphical tool for managing context information, for allowing Developers to

specify which features of context-awareness they need in their applications, ranging from

template specification for smart entities and situations to context modeling and rule
authoring. In other words, the Context GUI discloses to Developers all context-related

features of the IMPReSS Platform that they choose to add into their applications. Based on
the model defined by Developers, this tool communicates with the background context

manager module that implements the templates, rules, sensor and data fusion, context

model, and the context-reasoning engine. Developers must also select and developed
particular configuration options to be disclosed to Integrators and even Recipients.

 Data GUI: A graphical tool for allowing Developers to enter the needed configuration for the

data analysis and support module that uses supervised and unsupervised learning for
helping IMPReSS applications to make more informed decisions, based not only on real time

but also historic data. The Data GUI will configure and interact to the Data Manager module
that runs in the IMPReSS Middleware.

 Resource GUI: A graphical tool for allowing Developers to specify all particular information

needed for the mixed criticality resource management, which may be performed through

parameterization or through a specially designed applications classification language. This
language is used for describing the run-time requirements of an application in terms of its

priority, device access scheme (exclusive or shared) and security. The Resource GUI outputs
this information formally as an application criticality description that will be understood by

the Resource Manager in the IMPReSS Middleware.

 Communication GUI: A graphical tool for allowing Developers to specify all information

needed for dealing with communication in the IMPReSS Middleware. This tool is called

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

Resource	Adapta on	Interface	(RAI)		

Data		
GUI	

Resource		
GUI	

Context		
GUI	

Communica on		
GUI	

Composi on	GUI	

ID
E

M

id
d

le
w

a
re

P
la

tf
o

rm
 Storage 1

Storage 2

Storage 3

Storage 4

Data		
Manager	

Resource		
Manager	

Context		
Manager	

Communica on		
Manager	

Context		API	 Data		API	 Resource		API	 Comm		API	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 10 of 30 Submission date: 28/11/2014

integration support tool in the IMPReSS DoW and it will provide a collection of templates for

different technologies.

The IMPReSS Platform Middleware modules offer background services for their IDE counterparts:

 Context Manager: This module encompasses all background software components that a

typical context-aware middleware offers to its users (Perera 2014), such as context
templates, context models, context reasoning engine, and algorithms for sensor and data

fusion. It also interacts with storage modules to be able to store and retrieve context data.
Resources might be accessed directly or preferentially through the Resource and

Communication Managers.

 Data Manager: This module provides all software components needed to implement data

analysis and historic context information that will be used by IMPReSS applications. The
Data Manager also stores and retrieves its raw and processed data using the Storage

Manager. The machine learning algorithms used to process context-aware information for
energy efficiency systems are within the Data Manager. As for the Context Manager,

resources can be accessed directly or through the Resource and Communication Managers.

 Resource Manager: This module contains all software components needed for managing

mixed-criticality resources, such as device and subsystem resource management, resource
management and access scheduler, and security features for resource-constrained

subsystems.

 Communication Manager: This module implements all communication features of the

IMPReSS Platform, such as resource and service discovery and communication and networks

management. Also, it plays the role of a proxy (an intermediate module) for the other
modules to the Resource Adaptation Interface (RAI).

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 11 of 30 Submission date: 28/11/2014

4. Background

This section introduces that concept of context-aware computing focusing on the two key points,
which are context model and context reasoning.

4.1 Context-aware Computing

Context awareness is a core feature of ubiquitous and pervasive computing systems and has been
around for more than 20 years (Perera 2014). In the last decade, context-aware computing evolved

from typical pre-Internet platforms such as desktops to web-based applications and mobile
computing, surfing on the pervasive/ubiquitous computing wave and finally is now considered as an

important component for the Internet of Things (IoT).

Context-aware systems can be defined as systems that are able to adapt their behavior to the
current context conditions without explicit user intervention (Baldauf 2007). Makris et. al also define

context awareness as the ability of computing systems to acquire and reason about the context
information and adapt the corresponding applications accordingly” (Makris 2013). The term context

usually refers to locations, but actually can comprise different information used to characterize the

situation of entities that play an important role in the interaction of user and application (Dey 2007).
Entities are usually classified in three categories, which are: a) places, e.g. rooms, buildings, etc.; b)

people, both individuals and groups, and; c) things, which are physical objects, computer
components, etc. (Dey 2001).

The context life cycle might be defined as composed of four phases, as shown in Figure 3, which are
context acquisition, context modelling, context reasoning and context dissemination (Perera 2014).

Context needs to be acquired from a variety of sources that typically are physical sensors

(temperature, lighting, presence, etc.), but also can come from virtual sensors such as social
networks and calendars or logical sensors such as weather services. This context information

acquired from sensors must be modeled so that it can be used meaningfully. Further, modeled
context data must be processed to derive high-level context information from the raw data. This

process is called reasoning. Finally, context data (both low-level and high-level) must the distributed

to all applications that need it. The life cycle inks context dissemination back to context acquisition
because new context acquisition will be influenced by the adaptation of system behavior resulted

from the new context.

Different techniques and mechanism have been proposed for context acquisition and dissemination.

However, the key components of any context-aware system are the context model and the context
reasoning approach. These components are also intrinsically related to each other and must be

therefore defined together. The choice of a context model is a very important step in any context-

aware system because it influences the whole system and also limits the choice of a context
reasoning technique.

Figure 3 – Context life cycle

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 12 of 30 Submission date: 28/11/2014

The bird’s eye view of the macro-components presented by Figure 3 plays an important role in

making it easier to understand the general activities that must be undertaken in order to build any
context-aware system. Figure 4 presents a layered framework for context-aware systems (Baldauf

et. al 2007), where the separation of detecting and using context is highlighted to improve
extensibility and reusability of systems. The first layer is made or sensors (physical, virtual and

logical) and the second layer contains mechanisms for acquiring the context data from the sensors.
The raw data coming from sensors must be preprocessed to be useful for the higher levels where it

is stored accordingly and managed. Context management is a very important component, since it

includes the idea of controlling and taking decisions based on context information. Finally, the
application is notified of the context information and uses it as it sees fit.

Figure 4 - Layered conceptual framework for context-aware systems

4.2 Context Modelling

A context model is needed for defining, handling, storing and distributing context data in a machine-

processable form (Baudalf 2007). Different context models have been proposed and tested, such as
key-value, markup, graphical, object oriented, logical and ontology-based models (Makris 2013).

Key-value techniques are the simplest ones and model context information as key-value pairs in
different formats such as text and binary files. Markup Scheme Modelling improves the basic key-

value techniques with tag-based modeling methods. Graphical Modelling adds relationships to

context modelling using graphical representations such as Unified Modeling Language (UML). Object
Oriented Modelling extends the object-orientation paradigm for context modeling, using class

hierarchies and relationships, allowing data encapsulation and code re-usability. Logic Based
Modelling uses facts, expressions, and rules to represent context information, providing more

expressive context modeling methods compared to the previous modeling approaches but the lack

of standardization reduces its applicability. Finally, Ontology Based Modelling organizes context
information into ontologies using semantic technologies, such as Resource Description Framework

(RDF) and Web Ontology Language (OWL).

Table 1 compares the different techniques for context modelling, presenting advantages,

disadvantages and application guidelines, adapted from (Makris 2013). We highlight the object-
oriented and ontology-based modeling techniques, as they are clearly more suitable to our needs

than the other ones.

Table 1 – Context Modelling and Representation Techniques (Makris 2013)

Technique Pros Cons Applicability
Key- Value Simple

 Flexible
 Easy to manage when

small in size

 Strongly coupled with
applications

 Not scalable
 No structure or schema
 Hard to retrieve information
 No way to represent

relationships

Can be used to model limited
amount of data such as user
preferences and application
configurations

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 13 of 30 Submission date: 28/11/2014

 No validation support
 No standard processing

tools are available

Markup Scheme Flexible
 More structured
 Validation possible

through schemas
 Processing tools are

available

 Application depended as
there are no standards for
structures

 Can be complex when many
levels of information are
involved

 Moderately difficult to
retrieve information

Can be used as intermediate data
organization format as well as
mode of data transfer over
network

Graphical Allow relationships
modelling

 Information retrieval is
moderately easier

 Different standards and
implementations are
available

 Validation possible
through constraints

 Querying can be complex
 Configuration may be

required
 Interoperability among

different implementations is
difficult

 No standards but governed
by design principles

Can be used for long term and
large volume of permanent data
archival

Object Based Allows relationships
modelling

 Can be well integrated
using programming
languages

 Processing tools are
available

 Hard to retrieve information
 Semantic reasoning through

reflection is quite complex,
and some languages even
do not support reflection

 No standard but governed
by design principles

 Lack of validation

Can be used to represent context
in programming code level
Allows context runtime
manipulation
Very short term, temporary, and
mostly stored in computer memory

Logic Based Allows to generate high-
level context using low-
level context

 Simple to model and use
 Support logical reasoning
 Processing tools are

available

 No standards
 Lack of validation
 Strongly coupled with

applications

Can be used to generate high-level
context model events and actions,
and define constrains and
restrictions

Ontology Based Supports semantic
reasoning

 Allows more expressive
representation of context

 Strong validation
 Application independent

and allows sharing
 Strong support by

standardizations
 Sophisticated tools

available

 Representations can be
complex

 Information retrieval can be
complex and resource
intensive

 Ontology-based reasoning is
slow

Can be used to model domain
knowledge and structure context
based on the relationships defined
by the ontology

4.2.1 Object-Oriented Context Modelling

Modeling context information using object-oriented techniques offers all advantages of this well-
known and well-accepted programming and modelling paradigm. The existing approaches use

objects to represent different types of context (e.g. location, temperature) making it possible to
encapsulate, process and represent context data. Context information is represented as a set of

entities that in turn describe physical or conceptual objects such as a person or a communication

channel. The properties of the entities are represented by attributes.

One of the main advantages of the object-oriented approach for context modelling is the widespread

use of object-oriented languages, such as C++, Java and Python. Programmers have been learning
object-oriented techniques in the last 20 or 30 years and they master software development using

this approach. Therefore, using it to model context information is a very natural choice, because it

inherits all advantages of the object-oriented paradigm, such as encapsulation, inheritance,
abstraction and re-utilization. The object-oriented approach allows to better organize knowledge and

to simplify the creation of rules for context manipulation. Additional advantages and disadvantages
are shown in Table 1.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 14 of 30 Submission date: 28/11/2014

4.2.2 Ontology-based Context Modelling

An efficient model for manipulation, sharing and storage of context data is essential for context-
aware systems. Generally speaking, ontologies can be used for making communication possible or

easier among different people, applications, systems, which are part of the same knowledge domain,
but not always share the same concepts related to the components of that domain. The lack of

shared understanding may impose difficulties for knowledge interoperability, reuse and sharing,
which is important given the large variety of computing methods, paradigms, languages and tools.

Ontologies have been extensively used for context modeling and representation because they allow

knowledge sharing among humans and software agents, in addition to make it possible to reuse
knowledge and to easily integrate with reasoning engines. The most common language for

expressing Ontologies is OWL (Dean 2004) and rules are specified in SWRL (Horrocks 2004).

Many authors consider ontologies the most adequate approach for representing context because of

its expressiveness that allows modelling very complex environments, and reasoning engines can

build very complex reasoning sequences. However, ontology-based reasoning has some problems
that make its use in practical systems a challenging endeavor. Ontology-based languages, such as

OWL, are difficult to work with, with does not contributed for its acceptance among software
developers. Also, most of the ontology-based reasoning has a very poor performance. Additional

advantages and disadvantages are shown in Table 1.

4.3 Context Reasoning

Context reasoning refers to information or knowledge that can be inferred or deducted from

analyzing data and combining different context information, so that low-level context can be used to

generate high-level context information (Makris 2013). The need for reasoning can also be explained
by two characteristics of raw context: imperfection and uncertainty. The process of context

reasoning may be divided into three broad phases, which are context preprocessing, sensor data
fusion and context inference. Preprocessing is needed for adapting low-level context information into

some format that may be correctly processed by the other phases. Data fusion coming from
different sensors at different times frequently need to be combined with other to form a more

elaborate or to compute some statistics that make it more useful (Pramudianto 2014). For example,

instead of analyzing individual context information coming from a single sensor, some context
management system may prefer to average values of various sensors spread in a place such as a

temperature of a room for a given time can be calculated from an average value of several
thermometers in that room over the last one minute. Lastly, context inference is the process of

using existing context data to create knew knowledge, based on physical, virtual, and logical

sensors, as well as using rules entered by system administrators. For example, a rule may state that
air conditioners must be turned off and lights must be switched off when there is no one in a room.

There are a large number of different context reasoning decision models, such as machine learning
techniques, evidence or Dempster-Shafer theory, ontology-based and rule-based. These models are

not specific to context reasoning but commonly used in different fields in computing and
engineering. Two or the more common techniques are rule-based and ontological reasoning.

4.3.1 Rule-based Context Reasoning

Rules are a very simple and straightforward method of reasoning and therefore it is very popular
and there are many tools available. Rules are usually structured in a format similar to a selection

command (IF-THEN-ELSE) of a programming language. Expressing context reasoning as rules
makes it simpler for humans to better understand the behavior of the system and the outcomes and

the nature of actions that may be taken when a rule is successfully evaluated and executed. Rules

can be generated manually or even automatically depending on the occurrence of some important
and recurrent events. Whenever reasoning is needed, the system invokes the reasoning engine that

evaluates all stored rules searching for matches. When a rule is selected, the commands inside their
THEN or ELSE clauses are executed.

Rule-based reasoning can be used with object-oriented or ontology-based modeling.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 15 of 30 Submission date: 28/11/2014

4.3.2 Ontology-based Context Reasoning

Ontological reasoning is based on description logic, which is a family of logic based knowledge
representations of formalisms, and it supported by two common representations of semantic web

languages: RDF and OWL. The main advantage of ontological reasoning is that it can be easily
integrated with ontology modelling. On the other hand, a well-known disadvantage is that it is not

able to deal with imperfect context data (missing or ambiguous data, for instance). Missing values
happen due to the inherent process of data acquisition, where data is lost very frequently for a

variety of reasons. The use of rules can enhance ontological reason by providing default data to be

used in place of imperfect ones. For example, rules can replace missing values by predefined values
defined by the application.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 16 of 30 Submission date: 28/11/2014

5. Context Entities and Templates

The use of entities and templates for energy efficiency context management is aimed at making it
easier to understand, model and program the context-awareness features of the IMPReSS project.

This section provides an update of deliverable D6.1 (Kamienski et al. 2014), based on the most
recent developments of context model and reasoner.

The design of context templates is characterized by context entities, their relationships and their

attributes, which play a key role in the architecture of the Context Manager presented in section 6.

5.1 Entities, Relationships and Templates

Eight entities of typical scenarios for context-aware management for making efficient use of energy

in buildings have been identified and each one generated a variety of templates: Subject, Resource,
Place, Fusion, Rule, Action, Activity and Notification. Entities have templates that are involved in the

process of managing energy efficiency context. In the following sections, the templates (models) for
entities are presented, which are used for designing the context manager module.

5.2 Subject Template

Subjects, i.e., people are of paramount importance for energy efficiency in buildings, since the
former inhabits the latter. The use of the entity Subject might be important in a giving IMPReSS

application for making it clear the role played by people. However, Subject can be modeled as a

Resource in some cases, because people will be always be identified through a resource, either a
sensor or a device (e.g. a smartphone that identifies someone, which in this case might be also

considered a sensor).

A subject template for IMPReSS is specified by the following information:

 Id: a unique identifier for that particular participant in a given scenario;

 Role: the role played by someone in a particular scenario;

 Function: an explanation of the function associated to the role someone is playing; one

subject (person) can play different roles in different situations. For example, in a university
someone can be both a student and an employee at the same time, but depending on the

context they will interact in a different way with certain context features.

5.3 Resource Template

Resources are central for context management, because they interact directly with subjects and are
influenced by them.

A device template for IMPReSS is specified by the following information:

 Id: a unique identifier for all resources in a particular scenario;

 Name: resource name;

 Class: the class of the resource, which defines its role in the scenario for context

management, such as devices, equipments, sensors and actuators;

 Function: a description of the resource and its role in the scenario;

 Measurement: Additional information specifying exactly what is being measured in case the

resource is a sensor.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 17 of 30 Submission date: 28/11/2014

5.4 Place Template

Places are the locus where subjects and resources interact and where context situations occur and
must be manage by IMPReSS. Places may include offices, rooms, halls, corridors, atria, etc.

A place template for IMPReSS is specified by the following information:

 Id: a unique identifier for a place in a particular scenario; places may host different

scenarios, and in each one they may be used in a different way;

 Name: the name of a place;

 Type: an attribute used to better specify the place according to the conditions people find

and the way they interact with the place.

 Function: the function of the place in a particular scenario;

 Volume/area: an attributed used to better characterize the place according to its capacity of

holding people, equipments and its needs of lightening and temperature.

 Condition: typical operation conditions encountered by people and managed by the

IMPReSS-enabled context-aware application.

5.5 Fusion Template

Sensor data Fusion is highly needed by any context management system, since a high volume of
context information may be produced by sensors and must be deal by the system at any time.

Fusion is needed for reducing the amount of data available to the system according to some criteria,
falling into a class of applications called Complex Event Processing (CEP) (Wu et al. 2006).

A fusion template for IMPReSS is specified by the following information:

 Id: a unique identifier for a particular fusion criterion;

 Name: the name of the fusion criterion;

 Sensor: a sensor, a set of sensors of the same type in different places or a set of sensors of

different types that provide data for a particular fusion criterion.

 Algorithm: algorithm, or formula, used by the system to fuse sensor data.

5.6 Rule Template

Rules describe how the context management system deals with situations that occur frequently,

according to pre-specified parameters and conditions. A rule-processing engine receives a set of
parameters and matches them to the rules previously stored by the administrator (developer,

integrator or recipient, using the IMPReSS terminology) for selecting one or more rules for
processing.

A rule template for IMPReSS is specified by the following information:

 Id: a unique identifier for a particular context rule;

 Name: the name of a rule;

 Subject: the subject, or people, who request a rule application or who are affected by a

rule;

 Resource: a resource of a set of resources that are considered by a particular rule;

 Action: action or set of actions to be performance in case a given rule is processed

 Fusion: fusion criteria to be used by a rule

 Condition: a specific condition that must occur in order for a rule to be processed;

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 18 of 30 Submission date: 28/11/2014

 Result: the result of the rule processing after the action has been executed.

5.7 Action Template

An Action, or set of actions, is executed as a result of firing a Rule. Actions may perform different
tasks for dynamically adapting the behavior of some digital of physical resources for changing some

system configuration or sending an instruction for an actuator, e.g. changing the temperature of the

air conditioner or heater.

An action template for IMPReSS is specified by the following information:

 Id: a unique identifier for a particular action;

 Name: the name of the action;

 Description: textual description of the action;

 Algorithm: the program or configuration to be made;

 Resource: actuators or other systems to be affected by the action.

5.8 Activity Template

An Activity is a scheduled activity that will happen in a given Place according to a timetable and that
will affect one or more Resources. For example, an activity in a Theater may be a play, a concert or

a rehearsal and in a university it might be a lecture or a meeting.

An activity template for IMPReSS is specified by the following information:

 Id: a unique identifier for a particular activity;

 Name: the name of the activity;

 Data/Time: Date and time of the scheduled activity;

 Place: place where the activity will happen;

5.9 Notification Template

Notification is the feedback sent to the application of any Action performed by the reasoner as a
result of firing a rule. Applications must register notifications they want to receive from the context

manager.

A notification template for IMPReSS is specified by the following information:

 Id: a unique identifier for a particular notification;

 Name: the name of the notification;

 Action/Rule: Action and rule that generated that notification.

5.10 Entity Relationships

Figure 5 depicts the relationships among the eight entities, which are:

 Place has Resource: A Resource is always located in a Place;

 Resource fires Rule: Rules are fired by Resource usage;

 Fusion uses Resource: Fusion criteria combines data coming from sensors, which are

classified as Resources;

 Fusion influences Rule: Rules are influenced by sensor data that are combined by a Fusion

criteria;

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 19 of 30 Submission date: 28/11/2014

 Rule relates to Place: Rules affect and are affected by Places;

 Rule affects Subject: Subjects are directly affected by Rules in many different ways;

 Subject interacts with Resource: Subjects use Resources and are affected by them. Also,

resources as sensors monitor Subjects;

 Rule performs Action: when a Rule is fired, its processing results in one or more Actions to

be performed;

 Activity fires Rule: the schedule of Activities may fire Rules regardless of data coming from

sensors;

 Action sends Notification: the execution of an Action may result in a Notification being sent

back to the application.

Figure 5 – IMPReSS Context Entities and Relationships

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 20 of 30 Submission date: 28/11/2014

6. Context Management Framework Architecture

According the IMPReSS Software Architecture presented in section 3, the Context Manager is a
module of the IMPReSS Middleware, which is in charge of providing background software

components that a typical context-aware middleware offers to its users, such as context templates,
context models, context reasoning engine, and algorithms for sensor and data fusion. This session

focuses explicitly in the architecture of the Context Manager, based on the Context Templates

presented in section 5 and its interactions with the other IDE and Middleware modules.

6.1 Design Choices

An extensive research in the state of the art in context modelling and reasoning has been

undertaken in order to understand the options, choices, tradeoffs, and challenges in context
modelling and reasoning better. This effort resulted in the content presented in a summarized form

in section 4. Based on these findings, two main design choices have been made:

 Object-oriented context modelling: the use of the same paradigm used for modelling and

developing systems in the last decades strongly influenced that choice. Moreover, there

exists already very mature underlying technology such as persistence storage and rule

engines that are designed based on object-oriented approach.

 Rule-based context reasoning: given that object-oriented context modelling was chosen, the

natural choice is to use rule-based reasoning, which is commonly used and offers different

existing tools that integrate with object-oriented programming languages. However, other
approaches for context reasoning may be incorporated later in case the use of rule-based

reasoning proofs itself to be insufficient to obtain reasonable results.

6.2 Context Manager Architecture

Figure 6 depicts the Context Manager Architecture and its relationships with other components of

the IMPReSS Architecture. It can be roughly divided into two main planes inside the IMPReSS
Middleware, namely control plane and event plane. This architecture also includes modules that are

in the IMPReSS Middleware Interface and in the Resource Adaptation Interface, according to Figure

2, where the Context API and Communication Proxy reside, respectively.

 Event Plane: it comprises the two main components that operate in real time, i.e. the fusion

and the reasoner module, receiving and processing data coming from sensors and sending

commands to actuators.

 Control Plane: it comprises modules for context template configuration, storage and

notification, which are needed for the features of the event plane to work properly.

 IMPReSS Middleware API: the key module in the IMPReSS Middleware API as far as context-

awareness is concerned is the Context API, but the interface to the Data Manager is also

represented, as Data Proxy and the Context Notification feature.

 Resource Adaptation Interface (RAI): this module encapsulates the communication with

physical and digital resources via the Communication Proxy.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 21 of 30 Submission date: 28/11/2014

Figure 6 – IMPReSS Context Manager Architecture

The IMPReSS Context Manager modules are:

 Context API: The Context API is part of the IMPReSS Middleware API and exposes an

interface, allowing other modules, both belonging to the IDE and Middleware, to interact
with the Context Manager. For instance, for CRUD (create, read, update, delete) operations

related to context templates. Through the Context API the entity templates are configured in
the Context Storage. Please notice that the Context Manager assumes it will be able to

successfully find and establish communication with Resources, i.e., sensors and actuators.
The Context Manager learns about Resources through the Context API used by the

application in the IMPReSS IDE. In turn, the application will learn about Resources through

the Resource Manager (section 3), which discovers them from the environment.

 Data Proxy: This module encapsulates the communication with a data storage and retrieval

module, either raw data coming from sensors or processed data produced by a fusion

operation. It is defined as a small stub module that hides the details of using the Data API
to the Context Manager, or alternatively it provides access to an internal Local Data Storage

in case communication with the Data Manager is not available.

 Local Data Storage: This module implements an internal data storage feature for situations

where using the Data Manager (section 3) is not possible or even desirable. It stores all data
coming from sensors and also data fused by the Context Manager. It is a local database for

making it possible to have prompt access to historical data.

 Context Storage: This module is responsible for storage and retrieval of context entity

templates, via the Context API. According to section 5, eight entities have been identified for

the Context Manager and are dealt with by the Context Storage, namely Subject, Resource,
Place, Fusion, Rule, Action, Activity and Notification.

														Fuser

 Context Storage
 Place | Subject

Resource | Fusion

 Action| Rule

 Activity | Notification

Resource
Adaptation

Interface

IMPReSS IDE

IMPReSS
Middleware API

IMPReSS
Middleware

 Resources

Control Plane

Event Plane

						Reasoner

Communica on	Proxy	

Reasoner	
Log	

Local	Data	
Storage	

Data		
Proxy	 Context API

Context	
No fier	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 22 of 30 Submission date: 28/11/2014

 Reasoner: The Context Reasoner is the piece of software able to infer logical consequences

from a set of asserted facts, as introduced in section 4.3. Also according to section 6.1, the
IMPReSS Context Manager is based on an object-oriented model and a rule-based reasoning

approach. The Reasoner performs its function by reading entities from the Context Storage,

i.e. Entity Templates such as Rule, Place, Resource and Action. Having all entities, whenever
it is invoked with a set or parameters it searches the entire set of rules for a match, i.e., a

particular rule that matches the parameters and as a consequence will be executed. In some
situations the Reasoner may find two or more rules that match the parameters, i.e. there

may be a rule conflict. Whenever a conflict happens, the Reasoner must select only one rule

to be executed based on some conflict resolution mechanism. The Reasoner is invoked by
the Fuser whenever Fusion criteria are met. As a result of firing a rule, one or more actions

are performed and they usually refer to changing the configuration of devices or equipments
for dynamically adapting behavior, e.g. turning off an elevator or lowering the temperature

of an air conditioner. The Reasoner performs this task by sending command messages to

actuators through the Communication Proxy. The Reasoner can also receive historical data
from the Data Proxy that may be needed by some rules.

 Reasoner Log: This module stores all actions taken by the Reasoner, for notification and

auditing purposes.

 Context Notifier: Whenever an application requires a notification of certain actions (e.g.

turning on or off certain devices) taken as a result of the successful processing of a rule by

the Reasoner, it can configure the Notification entity template. The Context Notifier will
monitor all actions configured to be notified in the Notification template and send

notifications back to the application through the Context Notification feature inside the

Context API. Context Notification may be implemented using a mechanism based on
callback functions that are registered by the application when configuring the Notification

Entity Template.

 Fuser: This module is responsible for data fusion, i.e. a set of techniques that combine data

from multiple sources such as sensors and gather that information in order to achieve

inferences, which will be more efficient and potentially more accurate than if they were

achieved by means of a single source. The Fuser is directly connected to the Communication
Proxy for receiving real time sensor data and when fusion criteria are met it activates the

Reasoner and stores the fused results in a data storage using the Data Proxy. Multiple fusion
criteria may be active concurrently and therefore this module plays a key role for the

performance of the Context Manager, because in a real scenario hundreds or thousands of
sensors may send data values with a high frequency. The Fuser reads the fusion criteria

from the Context Storage and that is how it finds out which data must be requested from

the Communication Proxy. Whenever a new fusion criteria is configured the Fuser registers
the corresponding resources to be monitored, e.g. sensors, in the Communication Proxy and

the latter starts sending data to the former.

 Communication Proxy: This module encapsulates the communication with resources, i.e.

sensors and actuators. It can be implemented as a small stub module for hiding the details

of both the Communication Manager and Resource Manager (Figure 2). Alternatively, it can

directly implement a communication protocol that interacts with the resources, for instance
using a machine-to-machine communication protocol typically used in the Internet of Things

(Borgia 2014). The Communication Proxy may also be represented as part of the IMPReSS
Middleware API but from the Context Manager point of view it is an internal middleware

interface. Also, it intermediates communication with lower level resources and thus it makes
it easier to understand the architecture and the way the modules interact with each other.

6.3 Implementation Guidelines

The implementation of the Context Manager Architecture described in section 6.2, based on an

object-oriented context modeling and rule-based context reasoning, has already started aiming at
developing a preliminary prototype for evaluating the adequateness of using different existing

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 23 of 30 Submission date: 28/11/2014

technologies. The implementation guidelines shown in Figure 7 is a result of extensive research

about existing Complex Event Processing (Wu et al. 2006), Rule Engines (Sun et. al 2014), protocols
for the Internet of Things (Aztoria e. al 2010) and related technology.

Figure 7 – Implementation guidelines for IMPReSS Context Manager Architecture

The implementation of the Context Manager Architecture will be based on free or open-source
software systems. Some strong candidates for implementing the components of the Context

Manager are:

 Context API: RESTful Web Services (Pautasso et. al 2008), like the other middleware APIs.

 Data Proxy: a specially developed Java program that encapsulates communication with the

Data API or Local Data Storage.

 Local Data Storage: any Relational Database Management System (RDBMS), such as

PostgreSQL1 or MySQL2.

 Context Storage: any RDBMS with an Object-Relational Mapping (ORM) system, such as

EclipseLink3 or Hibernate4. The use of an ORM is needed because on the one hand data is
structure and therefore suitable for a RDBMS. On the other hand, the context modeling is

object-oriented, so that a mapping between both models is required.

 Reasoner: Drools5 is a Rule Engine, which is classified as a Business Rules Management

System (BRMS)6. Two components have been evaluated for the Context Reasoner, Drools

Expert, a business rules engine and Drools Workbench (formerly known as Guvnor) a web

graphical interface for rule authoring and management.

1 http://www.postgresql.org
2 http://www.mysql.com
3 http://eclipse.org/eclipselink
4 http://hibernate.org
5 http://www.drools.org
6 http://www.drools.org

														Esper
 (Fuser)	

Resource
Adaptation

Interface

IMPReSS IDE

IMPReSS
Middleware API

IMPReSS
Middleware

 Resources

Control Plane

Event Plane

						Drolls
 (Reasoner)	

Communica on	Manager	
MQTT	Broker	

(Communica on	Proxy)	

RDBMS	
(Reasoner	Log)	

RDBMS	
(Local	Data	
Storage)	

Java	
(Data	Proxy)	

REST
(Context	API)	

Java	
(No fier)	

EclipseLink
(ORM)	

RDBMS
(Context	Storage)	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 24 of 30 Submission date: 28/11/2014

 Reasoner Log: any RDBMS.

 Context Notifier: a specially developed Java program that must work together with the

Reasoner Log, either configuring triggers or polling the database for actions that must be
reported to the application.

 Fuser: Esper7 is a component for enabling complex event processing (CEP) and event series

analysis. It enables rapid developments of applications that process large volumes of

incoming real-time and historical messages or events. Esper can filter, analyze, and fuse
events in various ways, configurable through an SQL-like Event Processing Language (EPL).

In Esper, Fusion criteria are called streams.

 Communication Proxy: a specially developed Java program that encapsulates the

communication with resources, either the Communication Manager or a MQTT8 broker.

6.4 Context Manager Processing Steps

In order to understand the interworking of the Context Manager components (Figure 6) easier, this
section sheds some light into the data flow and processing steps involved in the process of analyzing

sensor data and sending commands to actuators. Figure 8 introduces the processing steps and data

flow for the Context Manager, based on the implementation guidelines with software modules
presented in Figure 7. Not all components are detailed here, but only those that are in the critical

path in the event plane. The sequence of steps is:

1. Sensors send measured data through the MQTT broker;

2. A preprocessor receives data values from the MQTT broker and adapts them for being

processed by Esper. Please notice that the preprocessor is part of the Fuser.

3. The preprocessed data is delivered to Esper;

4. Esper applies fusion criteria, using its Complex Event Processing engine.

5. Whenever an Esper triggers a result, it is delivered to Drools for searching rules to decide

actions to be taken;

6. Actions resulting of Drools rules go through a postprocessor and sent to MQTT;

7. Actions commanded by Drools are delivered to actuators to be enforced.

Fused data values produced by Esper are stored in the Data Storage and actions taken by Drools are
stored in the Reasoner Log. In addition to the data coming from sensors, Esper and Drools are

configured by data coming from entities stored in the Context Storage. All actions registered for
notifications are sent back to the application.

Next we exemplify the processing steps and data flow for the Context Manager with three examples,

of controlling temperature, lighting and a water pump.

7 http://esper.codehaus.org
8 http://mqtt.org

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 25 of 30 Submission date: 28/11/2014

Figure 8 – Processing Steps and Data Flow for the Context Manager

Figure 9 depicts a scenario of automatic control of temperature. The data values measured by a

variety of sensors are sent, via MQTT, to the preprocessor that groups the measurements by Place
and forward them to Esper, which in turn applies a Fusion criterion that computes an average.

Whenever a new average is available, Esper invokes Drools, that now searches all Rules stored in its
database that match the fused data received as a parameter, i.e. the average temperature. Drools

finds a rule for turning on the air conditioner in that Place. Finally, that action is interpreted by the

postprocessor and sent via MQTT as a message commanding an actuator to turn on the air
conditioner. Please notice that Esper is required in this scenario because hundreds or thousands of

fusion criteria may be processed simultaneously, as long as there are different Places and resources
eligible to be controlled by the IMPReSS Application.

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
Processing	

MQTT	
Broker	

Actuator	
	
	

Data	
Storage	

Context	
Storage	

Reasoner	
Log	

No fier	

1	

2	

3	

4	

5	

6	

7	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 26 of 30 Submission date: 28/11/2014

Figure 9 – Processing steps and data flow – Temperature Control

Figure 10 depicts a scenario of automatic control of lighting in a given Place. The data flow and

processing steps are the same for the temperature scenario. The data values with light intensity are
measured by different sensors and send via MQTT to the preprocessor that groups the

measurements by Place and forward them to Esper, which in turn applies a Fusion criterion that
computes an average. Whenever a new average is available, Esper invokes Drools, that now

searches all Rules stored in its database that match the fused data received as a parameter, i.e. the
average temperature. Drools finds a rule for switching on the lights in that Place. Finally, that action

is interpreted by the postprocessor and sent via MQTT as a message commanding an actuator to

switch on the lights.

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
Processing	

MQTT	
Broker	

Actuator	
	
	

TEMPERATURE	

Publishing	messages	on	a	topic	
	

Temperature	<-	24	SensorId	276	
Temperature	<-	23	SensorId	290	
Temperature	<-	24	SensorId	277	
Temperature	<-	25	SensorId	278	
Temperature	<-	22	SensorId	291	

Preprocessing	posts	of	the	topic	
	

Temperature	<-	24	SensorId	276	
Temperature	<-	23	SensorId	290	
Temperature	<-	24	SensorId	277	
Temperature	<-	25	SensorId	278	
Temperature	<-	22	SensorId	291	
	
	

	
	
	

Sending	preprocessed	messages	
	

Place	R244		
Temperature	<-	24	SensorId	276	
Temperature	<-	24	SensorId	277	

Temperature	<-	25	SensorId	278	
	

Place	R655	
Temperature	<-	23	SensorId	290	
Temperature	<-	22	SensorId	291	

Applying		fusion	criteria		
	

select avg(temperature) as avgT, * from

ImpressCEP(name=‘R244').win:length_batch(3)	
		

	
select avg(temperature) as avgT, * from

ImpressCEP(name=‘R655').win:length_batch(2)

	

Evalua ng	rules	
	
rule “TEMPERATURE R244"	
 when	
 n : Room(avgT > 24);	
 then	

 n.setTurnOnArCondicioando(true);	
end	

	
	
rule "TEMPERATURE R655"	

 when	
 n : Room(avgT > 23);	
 then	
 n.setTurnOnArCondicioando(true);	
end	

Publishing	messages	on	a	topic	
	

Air	condi oning	<-	ActuatorID	280	turn	on	

Performing	ac ons	
	
Air	Condi oning	in	Room	R244	connected	

1	

1	

2	

2	

3	

3	

4	

5	

6	

7	

5	

6	

7	

4	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 27 of 30 Submission date: 28/11/2014

Figure 10 – Processing steps and data flow – Lighting Control

The last example is the control of a water pump based on energy stored on photovoltaic panels,

showed by Figure 11. The data values with the amount of energy in the solar energy system are
measured by sensors and sent via MQTT to the preprocessor to be sent to Esper. In turn, Esper

applies a Fusion criterion involving the amount of energy generated by the photovoltaic panels and
the amount of energy stored in the batteries and when this is done, it invokes Drools for searching

all its Rules that match criteria, that in this case eventually turn on the water pump. Finally, that

action selected in the Rule is interpreted by the postprocessor and sent via MQTT as a message
commanding an actuator to switch on the lights.

Publishing	messages	on	a	topic	
	
Luminosity	<-	478	SensorId	376	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378		
Luminosity	<-	772	SensorId	391	

Preprocessing	posts	of	the	topic	
	
Luminosity	<-	478	SensorId	376	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378		
Luminosity	<-	772	SensorId	391	
	

	
	
	
	

Sending	preprocessed	messages	to	Esper	
	
Place	R244		
Luminosity	<-	478	SensorId	376	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378	
	

Place	R655	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	772	SensorId	391	

Applying	fusion	criteria		
	
select	avg(luminosity)	as	avgL,	*	from	
ImpressCEP(name='R244').win:length_batch(3)	
	
	
select	avg(luminosity)	as	avgL,	*	from	
ImpressCEP(name='R655').win:length_batch(2)	
	
	

Evalua ng	rules	
	

rule “LIGHTING R244"	
 when	

 n : Room(avgL < 500); 	
 then	
 n.setTurnOnLight(true);	
end	
	

rule " LIGHTING R655"	
 when	
 n : Room(avgL < 500); 	
 then	
 n.setTurnOnLight(true);	

end	

Publishing	messages	on	a	topic	
	
Lamp	<-	ActuatorID	380	turn	on	

Performing	the	ac on	
	

Lamp	on	in	Room	R244	

1	

1	

2	

2	

3	

3	

4	

5	

6	

7	

5	

6	

7	

4	

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
processing	

MQTT	
Broker	

Actuator	
	
	

LIGHTING	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 28 of 30 Submission date: 28/11/2014

Figure 11 – Processing steps and data flow – Water Pump Control

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
processing	

MQTT	
Broker	

Actuator	
	
	

Publishing	messages	on	a	topic	
	
Photovoltaic	Panel		<-	278	SensorId	576	
Photovoltaic	Panel	<-	273	SensorId	590	
Photovoltaic	Panel	<-	268	SensorId	577	
Photovoltaic	Panel	<-	260	SensorId	578		
Photovoltaic	Panel	<-	272	SensorId	591	

Pre-processing	posts	of	the	topic	
	
Photovoltaic	Panel		<-	278	SensorId	576	
Photovoltaic	Panel	<-	273	SensorId	590	
Photovoltaic	Panel	<-	268	SensorId	577	
Photovoltaic	Panel	<-	260	SensorId	578		
Photovoltaic	Panel	<-	272	SensorId	591	

Sending	to	Esper	pre-processed	messages	
	
Photovoltaic	Panel	<-	278	SensorId	576	
Photovoltaic	Panel	<-	273	SensorId	590	
Photovoltaic	Panel	<-	268	SensorId	577	
Photovoltaic	Panel	<-	260	SensorId	578		
Photovoltaic	Panel	<-	272	SensorId	591	

Applying	fusion	criteria	
	
select	avg(ba ery)	as	avgB,	*	from	
ImpressCEP().win:length_batch(5)	
	
	
	

Evalua ng	rules	
	
rule “WATER PUMP"	

 when	
 n : Room(battery > 50 && waterTank < 70);	
 then	

 n.setActuator580(true);	
end	

Publishing	messages	on	a	topic	
	
Water	Pump	<-	ActuatorID	580	turn	on	

Performing	the	ac on	
		
Water	Pump	connected	

WATER	PUMP	

1	

1	

2	

2	

3	

3	

4	

5	

6	

7	

5	

6	

7	

4	

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 29 of 30 Submission date: 28/11/2014

7. Conclusion

The IMPReSS System Development Platform (SDP) will need to be context aware in order to provide
an efficient use of energy in buildings, in such a way to adapt its operations to the current context

conditions without explicit user intervention. The key components of a context-aware system are its
context modelling and reasoning approaches, which in IMPReSS will be an object-oriented and rule-

based respectively. The use of entities and templates for energy efficiency context management is

aimed at making it easier to understand, model and program the context-awareness features of the
IMPReSS project. Eight entities of typical scenarios for context-aware management for making

efficient use of energy in buildings have being identified and each one generated a variety of
templates: Subject, Resource, Place, Fusion, Rule, Action, Activity and Notification.

The IMPReSS SDP is divided into IDE and Middleware, where the IDE contains a series of GUI
modules and the middleware contains modules with background management responsibilities. The

Context Manager encompasses all background software components that a typical context-aware

middleware offers to its users, such as context templates, context models, context reasoning engine,
and algorithms for sensor and data fusion. This report introduces the Architecture of the Context

Manager, divided into control and event planes inside the IMPReSS Middleware. It also includes
modules that are in the IMPReSS Middleware Interface and in the Resource Adaptation Interface.

Some implementation guidelines are also presented, based on some literature research and hands-

on experience with existing technology.

This deliverable is an important output of Task 6.3 (Context Modelling Templates) since it will

influence the further implementation of the Context Manager, including to reasoning engine, which
will be reported in Deliverable D6.4 (Implementation of Context Reasoning Engine). Also, it will have

an influence in the context IDE module, or management GUI, that will be reported in Deliverable
D6.5 (Implementation of Context Modelling Tool and Templates). The IDE is part of the IMPReSS

Platform, and thus developers will use it to generate new applications (section 3). Many different

interfaces may access the Context Manager as part of the IMPReSS Middleware. The proof-of-
concept prototype will be based on the most up-to-date Web development techniques, given that

developers will probably develop applications on workstations.

IMPReSS D6.3 Context Management Framework Architecture and Design of Context Templates

Document version: 1.0 Page 30 of 30 Submission date: 28/11/2014

8. References

(Aztoria et. al 2010) Atzoria, L., Ierab, A., Morabitoc, G., "The Internet of Things: A survey",
Computer Networks, 54(15), pp. 2787-2805, October 2010.

(Badauf 2007) Baldauf, M., Dustdar, S., Rosenberg, F., “A survey on context-aware
systems”, Intl., Journal of Ad Hoc and Ubiquitous Computing, 2(4),

2007

(Borgia 2014) Borgia, E. (2014), The Internet of Things vision: Key features,
applications and open issues, Computer Communications, 54(1), pp. 1-

31, December 2014.
(Dean 2004) Dean, M., Schreiber, G. (2004), “OWL Web Ontology Language

Reference”, W3C Recommendation, 2004.

(Dey 2001) Dey, A., Abowd, G., “A conceptual framework and a toolkit for
supporting rapid prototyping of context-aware applications”, Human-

Computer Interactions (HCI) Journal, 16(2-4), pp.7-166, 2001.

(Dey 2007) Dey, A., Abowd, G., “Towards a better understanding of context and

context-awareness”, Workshop on the What, Who, Where, When and
How of Context-Awareness, 2007.

(Horrocks 2004) Horrocks, I., et al. “SWRL: A Semantic Web Rule Language combining

OWL and RULEML”, W3C member submission, May 2004.
(Kamienski et. al 2014a) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), Analysis of Energy Efficiency Context and Sensor Fusion
Algorithm, IMPReSS Consortium, Deliverable D6.1, May 2014.

(Kamienski et. al 2014b) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), SDP Initial Architecture Report, IMPReSS Consortium,
Deliverable D2.2.1, February 2014.

(Makris 2013) Makris, P. et. al, “A Survey on Context-Aware Mobile and Wireless
Networking: On Networking and Computing Environments’

Integration”, IEEE Communications Surveys and Tutorials, 15(1), 2013.

(Pautasso et. al 2008) Pautasso, C., Zimmermann. O., Leymann, F., (2008), Restful Web

Services vs. "Big" Web Services: Making the Right Architectural

Decision, 17th international conference on World Wide Web (WWW
2008), pp. 805-814, 2008.

(Perera 2014) Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., "Context
Aware Computing for The Internet of Things: A Survey", IEEE

Communications Surveys & Tutorials, 16(1), First Quarter 2014.

(Pramudianto 2014) Pramudianto, F., (2014), Implementation of Sensor and Data Fusion
Module, IMPReSS Consortium, Deliverable D6.3, September 2014.

(Proctor 2012) Proctor, M. (2012), Drools: a rule engine for complex event processing,
4th international conference on Applications of Graph Transformations

with Industrial Relevance, 2012.

(Sun et. al 2014) Sun, Y., Wu, T.-Y., Zhao, G., Guizani, M. (2014), Efficient Rule Engine
for Smart Building Systems, IEEE Transactions on Computer, 99, 2014.

(Wu et al. 2006) Wu, E., Diao, Y., Rizvi, S. (2006), High-performance complex event
processing over streams, ACM SIGMOD 2006, p. 407-418

