
Document version: 0.1 Submission date: 31 January 2014

Target Outcome: b) Sustainable technologies for a Smarter Society

(FP7 614100)

D4.2 Device and Subsystem Resource Management

31 January 2014 – Version 1.1

Published by the Impress Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 2 of 16 Submission date: 31 January 2014

Document control page

Document file: D4 2 Device and Subsystem Resource Management_v1.docx

Document version: 0.4

Document owner: Enrico Ferrera (ISMB)

Work package: WP4 – Mixed Criticality Resource Management
Task: T4.2 Device and Subsystem Resource Management

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Davide Conzon, Enrico

Ferrera

 Table of content

0.2 Jussi Kiljander Contributions to sections 1 and 4

0.3 Davide Conzon, Enrico

Ferrera

2014/03/30 First draft

0.4 Enrico Ferrera 2014/04/12 Ready for internal review

1.0 Enrico Ferrera 2014/04/30 Document modified according to the

internal review

1.1 Davide Conzon 2014/10/11 Document modified with the API of the

LRM modified to handle several

resources.

Internal review history:

Reviewed by Date Summary of comments

Ferry Pramudianto 2014/04/28 Requires some clarification on the

interaction between GRM & LRM.

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 3 of 16 Submission date: 31 January 2014

Index:

1 Executive summary ... 4

2 Introduction .. 5

3 Service Proxy .. 7

3.1 Description of the service proxy architecture ... 7
3.2 Interaction of the LRM with the global components for resources management9

4 Local Resource Manager API ... 11

4.1 Java API .. 11
4.1.1 Interface LRMInterface .. 11

4.2 REST API ... 12
4.2.1 LRM REST interface ... 12

5 Summary & Conclusion .. 15

6 Bibliography .. 16

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 4 of 16 Submission date: 31 January 2014

1 Executive summary

The goal of this deliverable is to give a definition of Service Proxy and describe how it is composed

and works. Furthermore it is a compendium of the prototypical implementation of the interface

between the Resource Management components and the Service Proxies. Particularly, the interface
represents a software layer that interacts with the Application Level Resources, which are abstracted

by the Resource Adaptation Interface and exposed as services through the proxies.

In Chapter 2 there is an introduction to the general architecture of the Resource Management module

of the IMPReSS platform, which is composed by both global and local components. The local ones are

part of Service Proxies, which are defined and described in Chapter 3. In Chapter 4 there is the
description of the interface between Service Proxies and Resource Management, which is the core of

this document. According to the fact that D4.2 actually consists in the prototypical implementation of
the previously mentioned interface, this document is considered just a compendium with the interface

specification and for this reason has been kept with a restricted number of pages.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 5 of 16 Submission date: 31 January 2014

2 Introduction

We believe that in the future IoT systems will be open computing platforms that support applications

developed by 3rd party developers much in the same way as PCs, tablets, and mobiles phones at the

moment. The main difference between IoT platforms and these traditional computing platforms is that
the IoT systems are highly distributed and consist of numerous heterogeneous devices that monitor

and interact with the physical world in order to provide the necessary computing facilities for
applications. The heterogeneous nature of this type of IoT platforms imposes many challenges that

need to be tackled before the functionality of the devices can be provided as a uniform computing

platform. In particular, managing the access to resources between mixed criticality 3rd party
applications is a big challenge in these types of open IoT systems.

In IMPReSS project we provide a solution to this challenge by abstracting the resources access and
providing platform components for managing the access to application level resources (i.e. sensors

and actuators).

Figure 1.Resource management architecture for mixed critical IoT applications.

The resource management architecture (presented in the Figure 1.) consists of two levels: global and
local. At the global level the role of the resource management is twofold. First, solve conflicts between

applications that either request exclusive access to a same resource or request access to different
resources that might interfere with each other in the real word (e.g. lights, heating systems, etc.).

Second, optimize the usage of resources shared between applications so that the performance of the

whole IoT system is as optimal as possible.

The global level resource management architecture consists of two components, namely System
Knowledge Base and Global Resource Manager. The System Knowledge Base is a shared memory of
the system that provides publish/subscribe interface for other components of the IMPReSS platform

to share information about resources, applications and devices in a machine-interpretable format. The

Global Resource Manager is the functional component responsible for the actual resource
management. It subscribes to the application and resource descriptions published to the System
Knowledge Base and is this way aware of the current state of the system and thus able to manage
the resource access.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 6 of 16 Submission date: 31 January 2014

At local level the resource management is handled by a Local Resource Managers (LRMs) assigned for
each resource (or Service Proxy). It is the responsibility of the LRM to guarantee that more critical

applications are served before less critical ones. Additionally, the LRM ensures that the applications

accessing the resources have has been authorized by the GRM. In this deliverable, we will describe
the interfaces and functionality of the LRM in detail.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 7 of 16 Submission date: 31 January 2014

3 Service Proxy

The D4.1.1 (IMPReSS, 2014) has presented the domain model of mixed critical IoT systems as

reported in Figure 2.

Figure 2. Domain model for mixed criticality in Internet of Things.

In the Internet of Things – Architecture (IoT-A) project (Carrez, 2013) is stated that the main goal of

IoT is to enable users, i.e. humans or software agents, to interact with the physical world. The
interaction is possible leveraging on means, i.e. devices and/or external systems, which are able to

monitor, control and retrieve information about the physical world status. These means can be
classified in two categories:

 Sensors: which measure physical phenomenon and provide enhanced information regarding

the current context of external world. Temperature sensors, smoke detectors and third-party

systems providing current energy price or meteorological information are examples of sensors.

 Actuators: which modify the state of the physical world by taking commands from other parts

of the system. Air condition systems, automated doors and lights are examples of typical

actuators.

Sensors and Actuators are the resources available to the applications (i.e. software programs

developed with the IMPReSS platform) in order to realize a specific domain logic. For this reason, we

refer to Sensors and Actuators as Application Level Resources (ALRs).

The formal interfaces between the applications and the ALRs are defined as Services. A Service

Proxy is an IMPRESS platform component that is responsible for the implementation of the interface
between the ALRs and their users. In other words, a Service Proxy is a software component that is

responsible for the abstraction of ALRs, hiding the various implementation details (e.g. communication
protocols and data format), and instead providing a uniform virtualization for them within the IMPRESS

platform. In conclusion, when applications need to interact with the physical world through ALRs, they

can do it through virtual resources (i.e. Service Proxies) that provide a bridge to the actual Sensors
and Actuators, exposing their offered services.

3.1 Description of the service proxy architecture

In Figure 3 is shown the internal architecture of a Service Proxy. A Service Proxy is composed by different

sub-components:
 Resource Adaptation Interface (RAI)

 Local Resource Manager (LRM)

 REST interface

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 8 of 16 Submission date: 31 January 2014

Figure 3: Service Proxy architecture

The Resource Adaptation Interface is a software layer that allow to integrate different ALRs (i.e.

devices or sub systems) in the physical world to the IMPReSS platform. RAI acts as the glue between

the IMPReSS system and the physical world. One can see this layer as the hardware drivers needed
for IMPReSS in order to communicate with the ALRs. It is the lowest layer of the Service Proxy and is

used to hide technology-specific details for interaction with ALRs. The abstracted ALRs are virtualized
within IMPReSS platform by the Service Proxies themselves and used by the Applications in order to

implement suitable domain logics. RAI is defined and implemented in Task 3.1 and will be described

more deeply in D3.1.

The Local Resource Manager is a Service Proxy component responsible for the local management

of ALRs. It is composed by two sub-components:

 The Scheduler, which schedules the access to ALRs. Scheduling is only needed when multiple

applications have been authorized to access the same resource (i.e. when the applications use

a shared resource access scheme). The basic principle in LRM’s Scheduler is to guarantee that
more critical applications are served before less critical ones. The definition of a scheduling

scheme will be more deeply addressed in deliverable D4.3 related to Task 4.3. A possible

approach that can suit IMPReSS goals can be a priority based pre-emptive scheduling, by
assigning a fixed priority to the mixed critical applications. This approach guarantees the more

critical applications are served before less critical ones. The main issue of this approach is that
it can happen that the less critical applications are not served at all, determining the starvation

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 9 of 16 Submission date: 31 January 2014

of lower priority applications when there are many high critical applications. In some cases
can be more suitable a round-robin scheduling algorithm, which allow an application to access

a resource following the order of the requests. In this case, the scheduler will perform the

pre-emption of the running application placing it at the end of a queue of waiting applications
and continuing giving access to the next application within the queue.

 The Access Controller, which is responsible for publishing the resource description of the ALR

it manages into the System Knowledge Base. In this way, the ALRs are “registered” to the
Global Resource Manager (GRM). Once GRM grants the access to the ALR (see D4.1.1 for

more details), the Access Controller is also responsible for checking if the Application who
requests to interact with ALR is the one previously authorized by GRM. If the Application has

been authorized, it can proceed calling the specific service provided by the abstracted ALR.

The interaction between the applications, Local Resource Managers and Global Resource
Manager are illustrated with two example scenarios in Section 3.2. This interaction is made

possible by the implementation of Local Resource Manager APIs. The description of the APIs
for the intercommunication with LRM is reported in Section 4.1.

 REST APIs are the access door to the services offered by Service Proxy. They consist in a

mapping of LRM APIs in REST commands for accessing ALRs services. The description of the

REST APIs are reported in Section 4.2.

3.2 Interaction of the LRM with the global components for resources management

When a new resource (and LRM) is added to the IMPRESS platform, it needs to be first discovered by
the Resource Discovery Manager component. The actual methods for resource discovery will be

investigated in Task 3.2 and reported in Deliverable 3.2. Once a new resource is found, the Resource
Discovery Manager requests the description of the resource and inserts it into the System Knowledge

Base. This way other components of the IMPRESS platform are aware of the resources in the network.

One of these components is the Global Resource Manager that is subscribed to the resource
specifications defined by the applications and will be notified every time a new resource matching the

specification is found. This interaction is depicted in the Figure 4.

Figure 4. Resource discovery and registration.

Application get access to resources by sending a reserveResource() request to the GRM.

The message parameters define the resource specification of interest. The GRM will select

the most suitable resource for the application from all the resources matching the given

specification and notifies the application about the resource. In order to assign the more

suitable resources to the applications, the resource description must be constantly

updated with informations such as the total service execution time, packet loss rate,

service utilization rate, etc. Such kind of information are going to be retrieved by the

IMPReSS Network Manager, which will operate at both resource and Service Proxy levels

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 10 of 16 Submission date: 31 January 2014

in order to update the resource description on the System Knowledge Base. The role of

the Network Manager will be more deeply analysed and defined within Deliverable D3.4.

An extended version of the Service Proxy interface will be defined in order to provide

relevant services to the Network Manager. Additionally, the GRM informs the LRM about

the application authorized to access the resource. This is done with the authorizeAccess()

message which defines the application ID, the criticality, and the required security level.

Once the application and the LRM have been notified about the pairing the application

can start requesting domain specific services provided by the resource. This happens be

sending a requestResource() message to the LRM with the actual domain specific

operation as payload. If the LRM receives multiple simultaneous requests it schedules

them based on the criticality of the application. This way the more critical applications

are always served before less critical ones. The Figure 5 illustrates message exchange

between applications, GRM and LRMs in an example scenario where two applications need

to access a sensor resource using shared access scheme.

Figure 5. Message exchange between applications, global RM, local RM, and a resource.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 11 of 16 Submission date: 31 January 2014

4 Local Resource Manager API

In this Section, the APIs exposed by the LRM to the GRM for the control of ALRs are described. The

section is subdivided in two parts, in the first one there is the description of the Java implementation

of the interface between LRM and GRM, with also some examples of specific domain APIs; in the
second one there is the description of the REST interfaces exposed by the Service Proxy, with the

mapping between these and the Java ones.

4.1 Java API

Java Interface of the LRM to the GRM and some examples of domain specific APIs of sensors and

actuators.

4.1.1 Interface LRMInterface

public interface LRMInterface

This is the interface implemented by the LRM to regulate the access to local resources. These methods
are called (through the REST interfaces) by the GRM, which is in charge to control the resource

allocation to the apps at global level.

Methods

requestResource

Object requestResource(String resourceID. String appID, String operation)

 Parameters:

 appID: ID of the application that has requested to execute an operation on the resource.

resourceID: required: ID of the resource on which the operation has to be executed.

 operation: specific operation to be executed on the resource.

 Returns:

 Resource/Operation specific value.

 Description:

This operation is used by apps to request a specific service from the application level resource.

The LRM uses the Application ID to schedule the access to the resource (indicated by the
resource ID) and passes the resource specific operation to the resource that responses to the

app directly.

authorizeAccess

void authorizeAccess(String resourceID, String appID, int priority, String securityLevel)

 Parameters:

resourceID: required: ID of the resource on which the operation has to be executed.

 appID: ID of the application that is authorized to access to the resource.

 priority: level of priority assigned to the application (used to schedule the access to the

 resource, among different applications, with different priorities).

 securityLevel: level of security required to access to the resource (e.g. low, medium, high).

 Description:

Informs the LRM (resource) about an app that is allowed to access the resource indicated by

the resourceID.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 12 of 16 Submission date: 31 January 2014

deauthorizeAccess

void deauthorizeAccess(String resourceID, String appID)

 Parameters:

resourceID: required: ID of the resource on which the operation has to be executed.

 appID: ID of the application that is no longer authorized to access to the resource.

 Description:

Informs the LRM that the app cannot access the resource (indicated by the resource ID)

anymore.

getResourceDescriptions

DescriptionList getResourceDescriptions()

 Returns:

 Descriptions of the resources.

 Description:

 Used to obtain the descriptions of the resources

getServices

ServiceList getServices()

 Returns:

 List of services provided by the resources.

 Description:

 Used to obtain the list of service provided by the resources.

4.2 REST API

REST interfaces and mapping of these ones with the Java APIs presented before.

4.2.1 LRM REST interface

GET lrm/request_resource/:resourcedID/:operation

POST lrm/authorize_access

POST lrm/deauthorize_access

GET lrm/get_descriptions

GET lrm/get_services

Services

GET lrm/request_resource/:resourceID/:operation

 Java Interface method:

 requestResource (see the Java interface for method description).

 Description:

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 13 of 16 Submission date: 31 January 2014

The GET method has been chosen for this operation, because is idempotent on the status of
the LRM. The appID and resource ID are passed as custom header and not as sub-resource

or parameter of the URL, because it does not involve the name of the resource (the url), the

state of the resource (the body), or parameters directly affecting the resource (parameters).

 Parameters:

 appID: required. ID of the application that has requested to execute an operation on the
 resource. Example value: App124

resourceID: required: ID of the resource on which the operation has to be executed.
Example value: 4d62f720-5309-11e4-8247-0002a5d5c51b3&appID:app12

 operation: required. Specific operation to be executed on the resource. Example value:

 getTemperature.

 Returns:

 Resource/Operation specific value.

Example request:

GET http://127.0.0.1/lrm/request_resoure/4d62f720-5309-11e4-8247-

0002a5d5c51b3/getTemperature

POST lrm/authorize_access

 Java Interface method:

 authorizeAccess (see the Java interface for method description).

 Description:

The POST method has been chosen for this operation because it updates the status of the

LRM, the parameters are passed as POST data.

 Parameters:

resourceID: required: ID of the resource on which the operation has to be executed.
Example value: 4d62f720-5309-11e4-8247-0002a5d5c51b3

appID: required. ID of the application that is authorized to access to the resource. Example

value: App124

priority: required. Level of priority assigned to the application (used to schedule the access

to the resource, among different applications, with different priorities). Example value: 1

securityLevel: required. Level of security required to access to the resource. Example value:

low

Example request:

POST http://127.0.0.1/lrm/authorize_access

POST Data: resourceID:4d62f720-5309-11e4-8247-
0002a5d5c51b&ID:app124&priority=1&securityLevel=low

POST lrm/deauthorize_access

 Java Interface method:

 deauthorizeAccess (see the Java interface for method description).

 Description:

The POST method has been chosen for this operation for this operation because it updates
the status of the LRM, the parameters are passed as POST data.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 14 of 16 Submission date: 31 January 2014

 Parameters:

resourceID: required: ID of the resource on which the operation has to be executed.

Example value: 4d62f720-5309-11e4-8247-0002a5d5c51b3

appID: ID of the application that is no longer authorized to access to the resource.

Example request:

POST http://127.0.0.1/deauthorize_access

POST Data: resourceID:4d62f720-5309-11e4-8247-0002a5d5c51b3&appID:app12

GET lrm/get_descriptions

 Java Interface method:

getDescriptions (see the Java interface for method description).

 Description:

 The GET method has been chosen for this operation, because is idempotent on the status of
 the LRM.

 Returns:

 Description of the resources.

Example request:

GET http://127.0.0.1/lrm/get_descriptions

GET lrm/get_services

 Java Interface method:

getServices (see the Java interface for method description).

 Description:

 The GET method has been chosen for this operation, because is idempotent on the status of

 the LRM.

 Returns:

 Services provided by the resources.

Example request:

GET http://127.0.0.1/lrm/get_services

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 15 of 16 Submission date: 31 January 2014

5 Summary & Conclusion

In this deliverable, we described a Service Proxy with its architecture and functionalities.

To interact with the IMPReSS platform, a resource from the physical world is abstracted by the

Resource Adaptation Interface and virtualized within the platform as a provider of services by the
Service Proxy. Every single call for services from an Application if filtered by the Local Resource

Manager, which check a previously granted authorization to access the resources.

The interaction with the Service Proxy is made possible through the utilization of REST APIs that allow

to communicate with the Local Resource Manager. The Local Resource Manager APIs and the REST

interface, which are the focus of task T4.2, are described at the end of this document.

IMPReSS D4.2 Device and Subsystem Resource Management

Document version: 0.1 Page 16 of 16 Submission date: 31 January 2014

6 Bibliography

Carrez, F. (2013). IoT-A project deliverable D1.5 – Final architectural reference model for the

IoT v3.0. Retrieved from http://www.iot-a.eu/public/public-documents/d1.5/view
IMPReSS. (2014). IMPReSS project deliverable D4.1.1 – Initial application classification

language.

