

Target Outcome: b) Sustainable technologies for a Smarter Society

(FP7 614100)

D4.1.1 Initial application classification language

March 1, 2014 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 2 of 31 Submission March 1, 2014

Document control page

Document file: D4 1 1 Initial application classification language_v10.docx

Document version: 1.0

Document owner: Ferry Pramudianto (FIT)

Work package: WP4 – Mixed Criticality Resource Management
Task: T4.1 Application classification language and tool

Deliverable type: R

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Ferry Pramudianto 4/01/2014 Table of content

0.2 Jussi Kiljander, Janne

Takalo-Mattila

15/01/2014 First version for sections 2, 3 and 4

0.3 Ferry Pramudianto 26/01/2014 First version for sections 1, 5, 6 and 7

0.4 Jussi Kiljander, Janne

Takalo-Mattila

3/02/2014 Contributions and modifications to

sections 2, 4, 5, and 6.

1.0 Ferry Pramudianto 14/02/2014 Finalizing the document

Internal review history:

Reviewed by Date Summary of comments

Stenio Fernandes 11/02/2014 Accepted with minor corrections and

comments

Enrico Ferrera (ISMB) 2014/02/07 Accepted with minor corrections and

comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 3 of 31 Submission March 1, 2014

Index:

1 Executive summary ... 4

2 Introduction .. 5

3 Domain Model for Mixed Criticality in Internet of Things 7

4 Approach to Mixed Criticality Resource Management 9

5 Application Description (FIT) .. 15

5.1 Criticality level ... 15
5.2 Resource Requirement .. 16

5.2.1 Functional Requirements of Applications .. 16
5.2.2 Non-Functional Requirements of Applications.................................... 21

5.3 Serialization and Format of the application descriptions 27

6 Summary & Conclusion (FIT) .. 29

7 Bibliography .. 31

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 4 of 31 Submission March 1, 2014

1 Executive summary

This deliverable describes the initial proposal for mixed criticality resource management in the Internet

of Things (IoT) scenario. The approach is based on a central resource manager that which controls

and schedules the access to the devices, services and subsystems based on the criticality of the
applications.

The resource manager stores the information of the resources in a knowledge base that contains
representations of resources including functional capabilities and non-functional properties such as

CPU and memory utilization and end-to-end network delay. This knowledge base is used by the global

level resource manager to selects the most suitable resource for each application.

The local resource manager monitors the local resource utilization and reports this to the global

resource manager. Moreover, the local resource manager administers the access to the resource in a
way that only applications that have obtained a reservation from the global resource manager could

access it. The local resource manager will need also to schedule the access to the resource based on
the application criticality level.

Enabling the matching between application and requirements, the resources must have a metadata

description. Currently we see SSN ontology as a promising solution since it provides a basic schema
that we can extend to describe actuators and domain specific quality parameters.

The reminder of this deliverable is organized as the following. Firstly, in Section 2 we introduce the
background of the problem in the existing mixed criticality systems, the current approaches and how

these differs from the mixed criticality in the Internet of Things scenario. In Section 3, we present the

domain model of the mixed criticality system for IoT scenario. Section 4 contains the IMPReSS
requirements and the design of the resource management in detail, the communication among global

& local resource manager, the resources, and the system knowledge base. In section 5, we elaborated
the overview of ontology used to classify sensors and actuators, and we elaborated example of

required parameters that must be matched to the device descriptions. Finally in Section 6 we provided
our summary and conclusion.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 5 of 31 Submission March 1, 2014

2 Introduction

Mixed criticality (MC) system is a system that can execute several applications while guaranteeing

their differing criticality requirements (e.g. real-time, performance, security, safety, etc.). Traditionally,

MC is applied within single computing platform (single or multi-core) where processor (sometimes also
memory) is the resource to be shared between different applications or task.

In traditional MC systems, encapsulation is important, since a failure of micro components of a non-
safety-critical application subsystem must not cause the failure of application subsystems of higher

criticality. The focus of a safety-critical applications lies on the simplicity and determinism in order to

facilitate thorough verification and validation. On the other hand, non-safety-critical applications can
provide more complex application services, for instance, they need to deal with insufficient prior

knowledge about the environment.

Mixed criticality systems must ensure that upon incremental integration of subsystems, the prior

services of already existing subsystems are not invalidated. Composable and incremental certification
will require a means of identifying and assessing the “certifiability” of a component, even before it is

implemented(Baruah, Li et al. 2010). This call for both formal and analytical methods that seek to

define a design process that could produce certifiable systems. In practice, this is very challenging
since, for instance, some avionic systems have the ability to reconfigure themselves under certain

failures or contingencies, which yield the challenge of certifying reconfigurable systems from a cost,
effort, and complexity standpoint. Modern mixed criticality systems need to exhibit a high degree of

fault tolerance. However, achieving this in avionics system is particularly difficult.

Figure 1. ARINC 653 RTOS Architecture

As depicted in Figure 1, a standard approach in avionics system is to use ARINC 653 (ARINC

specification 653) time and space partitioning which partitions the processor based on isolated
operating systems. The access to the hardware resources is administered by the ARINC 653

time/space scheduler. Inside each partition, a priority-preemptive scheduler is used to ensure that the
tasks with highest priority are executed first.

In this project, we extend the MC idea from single device to Internet of Things (IoT) domain where

the resources to be shared are real world objects (e.g. sensor, actuators, etc.) present in a given IoT
environment. In addition to the resource type (i.e. sensors vs. processor) the main difference to the

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 6 of 31 Submission March 1, 2014

traditional MC system is that the IoT the systems consist of numerous different devices that are
connected through best effort networks.

There are two main motivations for adopting MC for IoT applications. First, it is costly to deploy new

physical resources for each new application deployed in an IoT environment and by adopting mixed
criticality technologies IoT applications may share these resources without jeopardizing the required

responsiveness. Second, in many use case scenarios it is not possible to deploy new actuator resources
for each individual application because the functionality provided by the resources would cause

interference between the applications. For example, it is not feasible to deploy new lights to the same
physical space for each application that needs to control them because they would still interfere with

each other in the real world.

The Internet of Things domain imposes many challenges to the resource sharing that are not typically
present in traditional MC systems. These challenges are mainly caused by the open and heterogeneous

nature of IoT. For instance, IoT environments are typically very dynamic which means that the system
evolves and changes constantly. It is typical that new devices and applications emerge at runtime

such as mobile devices, or devices that are added to upgrade the system. In IoT systems we do not

typically want to restrict the applications and devices that can be part of the system in the future (i.e.
we do not want to create closed systems). Because we cannot a priori define the type or functionality

of the devices and applications that might emerge to the system in the future the approach for
resource sharing needs to be also flexible and extendible for future needs. The heterogeneity of

computing platforms makes the communication and especially security management a difficult task.
Because of the evolving nature of the IoT systems and the security solutions also need to be

dynamically adjustable to the given situation of the system. The fact that typical devices (and

networks) in IoT are resource constrained makes this even more challenging.

In addition to the open and heterogeneous nature of IoT, the fact that IoT builds upon best effort

networks and communication solutions (e.g. wireless networks, IP networks) makes the mixed
criticality in IoT (depicted in Figure 2) a very different from the traditional MC systems whose

components are connected in a closed network. Although there have been solutions for prioritizing

network flows that are used for real-time traffics (e.g. multimedia traffic), we still do not have a full
control of different network configurations along the path within the internet. Consequently, hard real-

time requirements typically present in traditional MC systems cannot be guaranteed.

Providing a best effort mixed criticality for IoT, we propose an approach where access to the services

provided by the IoT resources can be differentiated based on the criticality of the application. Enabling
this approach the resources and applications are described with expressive and flexible representation

format and the access to the resources is controlled and scheduled by a common Resource Manager

(RM) component.

In this deliverable we will outline the overall approach for MC resource management in IoT. The main

focus in this deliverable will be on the application description language that describes the applications
in terms of criticality, security, and resources it needs to access.

Internet

N
o
n
-S

a
fe

ty

C
ritic

a
l A

p
p
lic

a
tio

n

N
o
n
-C

ritic
a
l

A
p
p
lic

a
tio

n

S
o
ft re

a
l-tim

e

A
p
p
lic

a
tio

n

Resource Proxies Best Effort

Hardware
Resources

Critical
Application

Critical
Application

Classic MCS

Sensors

IoT Resources

Actuators

Figure 2. Mixed Criticality in an IoT Scenario

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 7 of 31 Submission March 1, 2014

3 Domain Model for Mixed Criticality in Internet of Things

Mixed criticality in the domain of Internet of Things is a totally new concept and to understand what

it actually means (and what are the challenges), we will first present our vision for a domain model of

mixed critical IoT systems (depicted in the Figure 3).

Figure 3. Domain model for mixed criticality in Internet of Things.

According the Internet of Things – Architecture (IoT-A) project (Carrez 2013) the fundamental goal of

the IoT is to enable users (i.e. humans or software agents) to interact with the physical world. To
make this interaction possible there are needs for means to monitor the current state of the physical

world, and for methods to modify the state of the real world when needed. In practice, this interaction

is achieved via devices that can be divided into two groups based on their role in the system:

 Sensors: Sensors are devices that sense and measure a real world phenomenon, make

decisions based on the measurements and communicate with other parts of the IoT system

using wired or wireless communication methods. Temperature sensors and smoke detectors
are examples of sensor used in typical buildings.

 Actuators: Actuators are devices that modify the state of the physical world by taking

commands from other parts of the system using different kinds of communication methods.
Air condition systems, automated doors and lights are examples of typical actuators.

Similarly to IoT-A Architectural Reference Model (ARM) we refer the formal interface between the user

and the device as Service. Thus, there exists two types of generic Services in our domain model. First
a service that represent the functionality of actuators and Services that represent the functionality of

sensors.

The business logic (or domain logic) defining how the user interacts with the environment in a specific

use case is defined and implemented in applications (i.e. software programs) developed with the

IMPReSS platform. In order to realize the use case specified in the application logic, the application
needs to access the sensor and actuator services present in the particular IoT system. Therefore, the

sensors and the actuators are referred to as Application Level Resources in the domain model. The
capabilities of actuators and sensors to serve different applications in IoT systems are limited.

Additionally, typical use cases require some kind of coordination between the applications to be useful.

For instance, lighting can be controlled by many applications, but in order to provide a meaningful
service for the end-user, we need to limit which applications can control the actuators. Therefore, we

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 8 of 31 Submission March 1, 2014

need to be able to define the level of criticality and priorities for different applications and provide
means for managing and scheduling the resource access in order to make the performance of the

most critical applications as good as possible.

In addition to the sensor and actuator services, traditional resources such as processor and memory
provided by a computing platform can be also considered as Application Level Resources (i.e. these

are resources required by the software implementing the application logic) in the domain model.
However, since it is not typically relevant where the logic of the IoT application is deployed (i.e. the

application logic of different application do not need to be deployed on same devices and the
applications can even run in the cloud), we do not consider these traditional MC resources in this

project.

Resource such as energy, power, current, and bandwidth not directly used by applications are also
important for IoT systems. We refer to these resources as Device Level Resources because they are

resources required by the computing platforms that either host the Application Level Resource or
provide some other useful functionality for the user (e.g. fridge). Because the Device Level Resources
are not directly used by applications they are not presented in the application descriptions and are

thus not in the core focus of this deliverable.

In addition to managing and scheduling the resource access, security is also important part of mixed

criticality systems. This is especially true in IoT, because the applications interact with the physical
world and security attacks can have thus very serious consequences. The IMPReSS system needs to

meet the following well-known security principles (Waltenegus and Poellabauer 2010):

 Confidentiality: only authorized parties are able to access to information. The level of

confidentiality needed is not always totally self-explanatory. Patient data in hospital can be

easily realized as confident information, but for example in building management momentary

electricity consumption might be considered as non-confident information. However in some
cases these types of information could be interesting for a potential attacker.

 Integrity: unauthorized parties cannot modify the information transmitted in the system. In

IoT systems it is vital only the authorized parties are able to modify information and control
the devices present in the system.

 Availability: critical services are available when needed. In the IoT system the most critical

services need to be available at all the time. Preventing denial-of-service (DoS) attacks e.g.
in the wireless sensor networks perfectly is impossible most of the times. Therefore, the
most critical services need to work independently without network access.

In this deliverable the security will be covered as much as is feasible for the application descriptions.
The overall approach and architecture for dynamic security management will be presented in the D4.4.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 9 of 31 Submission March 1, 2014

4 Approach to Mixed Criticality Resource Management

There exist several possibilities to implement resource management for the Internet of Things

applications. For instance by defining static classifications and set priority based on these

classifications. Or to use a reservation system which only allows the application to access to the
resources after a reservation is approved.

As an initial proposal to address the challenges and requirements presented in the previous section
we design a resource management approach for mixed criticality in IoT where the access to application

level resources (i.e. sensor and actuator services) is managed by a functional component of the

IMPReSS platform, called Resource Manager. In addition to the Resource Manager, the approach for
mixed criticality management in IoT consists of tools that help the development, deployment, and

configuration of mixed criticality IoT applications.

The whole process related to development, deployment, and runtime management of mixed criticality

applications in IoT (depicted in Figure 4) is envisioned as follows. To enable the developer to focus to
the development of the business logic for the application and not to let her/him spending time with

technical details related, for example, to resource discovery, resource selection, resource access, and
the like, we propose an approach where an application description is used to represent necessary
information (e.g. criticality level, security level, resource specifications, etc.) about each application.

In addition to simplifying the access to application domain resources the advantage of this approach
is that, by taking the decision of which resources are used away from individual applications, the

functionality of the whole IoT system can be improved (i.e. the Resource Manager has a holistic view

of the system and it is thus able to optimize the resource usage for greater good of the whole IoT
system).

When new application is developed, the developer defines the specification of the application level
resources the application needs to access (e.g. the application needs to access a temperature sensor

that provides the temperature in Celsius with +-0.5 C accuracy). He will also give recommendations
for the criticality and security levels of each resource. These recommendations are based on the

knowledge the developer has about the application (i.e. how important each resource is for the

application, how private information the application needs to access, etc.). The application
development tool will assist the developer in this process and generate an application description that

will be used to manage and schedule the resource access. Additionally, the application developer
needs to write a short description for the application in human readable format. This description is

added to the application description and will be used by users to select which applications are deployed

to their IoT environment.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 10 of 31 Submission March 1, 2014

Figure 4. Development, deployment, and runtime management of mixed criticality applications.

The person responsible for deploying the application to the IoT environment (house, school, theatre,
city, etc.) is called a system administrator. He is the one who selects which applications are deployed

to her/his environment and she/he, of course, wants to make sure that the whole IoT system behaves
as it is supposed to. Before the application is deployed to an IoT environment, the system administrator

will need to set (or adjust) the criticality and security levels for the application (and for each resource
the application accesses). This process is done “manually” via the Configuration and Management Tool

and the decision will be based on:

 human readable description of the application,

 recommendations given by the application developer,

 the knowledge the system administrator has about the whole IoT environment.

We will also provide ways to modify the criticality and security levels of the application at runtime so
that the application can adjust to the dynamically changing requirements of the system. These

modifications will be made automatically by domain specific rules defined by the system administrator
with the help of the Configuration and Management Tool (it is also possible that the rules are defined

by experts and the system administrator only needs to select the most suitable rules for her/his

system). This is useful to define application that has different criticalities in different states

In addition to adjusting the security and criticality levels the system administrator can also configure

the resource specifications of the application. This is typically needed with general purpose application
needs to be tailored to a specific IoT environment. For example, if a developer has implemented a

general purpose application that controls fans in a room based on temperature and humidity values,
the system administrator could customize the application by modifying the resource descriptions so

that the sensors and actuators need to be located in a specific room (e.g. living room if she/he wants

to control the fans there).

When the application is deployed to the system, the Configuration and Management Tool submits the

application description to the Resource Manager component which will use the specification in three
ways.

1. Search for suitable resources for each resource specification in the application description. If

the SSM is unable to find suitable resources it will inform the system administrator that the
application cannot be deployed to the given IoT environment.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 11 of 31 Submission March 1, 2014

2. Manage and schedule the resource access globally and within a single resource to achieve,
at the same time, the most optimal resource utilization and to guarantee that the critical

applications have access to resources over less-critical ones.

3. Select the security mechanisms and to adjust the security level used in application – resource
interaction.

In the development process the software defining the business logic for the application needs also to
be deployed in a computing platform and configured to the particular IoT environment. The computing

platform where the application logic is deployed does not need to be present in the physical IoT
environment (i.e. it only needs to able to access the sensors and actuators deployed to the given IoT

environment) and it can be, for example, a mobile phone, a resource restricted device, a personal

computer, or a server in the cloud. It is also possible that the application logic is already installed to a
computing platform and the user just needs to configure the application so that it is able to join the

IoT environment. The actual process related to deployment of the application logic (i.e. the software)
is out of the scope of the work done in this work package. The final deployment of each application is

achieved by configuring the application so that it is able to access the Resource Management

components of the particular IoT environment. This configuration will be done via the Configuration
and Management Tool.

In practice, the logical Resource Manager component is divided into two levels (i.e. global and local)
and three components, namely System Knowledge Base, Global Resource Manager, and Local
Resource Manager. The runtime architecture for the mixed criticality resource management is depicted
in the Figure 5.

Figure 5. System model for runtime management and monitoring of application level resources.

The System Knowledge Base is a component responsible for representing the state of the system at

the given point in time. To this end, it acts as a blackboard and provides publish/subscribe based
interface for information about objects relevant for the IoT system. We use a Resource Description

Framework (RDF) (Klyne, G. and Carroll, J. J. 2004) data model for information representation,

because it provides flexible and extendable way to represent information about the system. This is
needed because we are neither able to predict what kinds of applications, resources, and devices, for

example, will be deployed to the system in the future, nor we are able to predict all the information
that is needed to represent these entities. With this approach the developers can also start with small

and simple descriptions and extend them when they have gained more understanding of the problem

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 12 of 31 Submission March 1, 2014

domain without a risk that they lose investments previously made (i.e. by using a blackboard pattern
and semantic technologies we can avoid the need to redo schemas and interfaces). Another advantage

of RDF and semantic technologies are that because they are standard knowledge representation

formats there exists “standard” descriptions of sensors and actuators in these formats that can be
used directly in the approach. The plan is also to apply techniques that enable subscriptions to events

with SPARQL (Harris, S. and Seaborne, A. (eds) 2012) (Harris, S. and Seaborne, A. (eds) 2012) in a
performance efficient way to make it possible to manage and monitor the environment in (quasi) real-

time.

In the first phase, the System Knowledge Base will be used to store information about the applications

and application level resources (i.e. sensor and actuator services) deployed to the system. Later it can

be extended, for example, with descriptions of devices (e.g. supported security mechanism, power
consumption, performance, etc.) and any other type of physical objects relevant for the management

and monitoring of the IoT system. In addition to providing extendable and flexible information sharing
solution for the resource management components, the System Knowledge Base provides interface

for other components of the IMPReSS platform to access information about applications, resources,

devices, and associations between them. This information can be used, for example, by the monitoring
tools to provide a view for the user about the environment or to track various events occurring in the

system. It can be also used by the context management components to enrich the context description
of the system.

At global level the Global Resource Manager controls which resources an application can access. There
is a single Global Resource Manager assigned for each IoT system. The idea in the global level resource

management is to optimize resource usage by selecting most suitable resources for each application

at runtime. The application description (presented in the section 5) defines the resource specifications
for each application. The Global Resource Manager subscribes to the application descriptions published

to the System Knowledge Base and will be notified when application descriptions are added, removed,
or modified. When new application is added to the system, Global Resource Manager will subscribe to

each resource specification defined in the application description. This way it is aware of the available

resources for each application and will be notified when resources are added, removed, or modified.
The Figure 6 presents the interaction between the resource management components in the above-

described scenario.

Figure 6. Interaction between Global and Local Resource Managers and the System Knowledge Base.

The applications get access to resources by making requests to the Global Resource Manager. When

the Global Resource Manager receives a new request to a resource specified in the resource

specification it selects the most suitable resource from resources matching the specification and
notifies the Local Resource Manager and the application about the result of the matching process. In

the matching process the Global Resource Manager will also define the security methods and levels
used in application – resource interaction. The security related aspects will be described in detail in

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 13 of 31 Submission March 1, 2014

the D4.4. The resource selection process depends on the scheduling approach and algorithms and
these will be described in the D4.3. When the Global Resource Manager associates an application with

a resource it will also publish information about the association to the System Knowledge Base. By

subscribing to this information, the monitoring tools and other IMPReSS component are able to
dynamically follow the state of the IoT system (i.e. which resources are accessed by which

applications).

The requests made by applications to resources are persistent and the applications need to inform the

Global Resource Manager when they no longer need the given resource. It is also possible that
sometimes the application needs to release a resource for more critical applications. This can happen,

for example, when a more critical application with exclusive access scheme make request to the same

resource. Additionally, an application may need to release a resource if the utilization rate of the
resource rises so high that the more critical applications accessing the resource in a shared mode

cannot be served in an appropriate manner. If an application needs to release a resource for more
critical application the Global Resource Manager will notify the application and a new resource is

assigned for the application if possible.

At local level there is a Local Resource Manager assigned for each resource. It schedules the resource
access within single resources and is only needed for scheduling when multiple applications can access

the same resource (i.e. when the applications use a shared resource access scheme). The basic
principle in the local level resource management is to guarantee that more critical applications are

served before less critical ones. In addition to scheduling the requests, the Local Resource Manager is
responsible for publishing the resource description of the resource it manages into the System
Knowledge Base. This way the resources are “registered” to the Global Resource Manager. The

interaction between the applications, Local Resource Managers and Global Resource Manager are
illustrated with two example scenarios in the Figure 7 and the Figure 8. This interaction will also be

described in more detail in the D4.2.

Figure 7. Example of resource management with exclusive resource access scheme.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 14 of 31 Submission March 1, 2014

Figure 8. Example of resource management with shared resource access scheme.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 15 of 31 Submission March 1, 2014

5 Application Descriptions

As introduced in the beginning of this deliverable, in IMPReSS, we focus on the Internet of Things

scenario in which resources consists of distributed sensor and actuator devices that can be shared by

different applications. In this context, applications that access shared resources might not know in
advance about the resources that would use since binding between the application and the resources

could happen dynamically at runtime.

For this purpose, we use an application description to express the required resources and how critical

the application is, so that the global resource manager could make a decision on which resources to

be assigned to the application. This will allow distributed resources to be bound “on demand” to
different applications that require them on different time frames.

The application description includes information such as:

 Criticality level of the application relative to required resources

 Functional and non-functional specification of the required resources the application needs

to access.

 Required security level to be fulfilled by resources

 Resource access scheme for each resource that denotes whether resources can be shared or

to be exclusively owned by an application.

5.1 Criticality level

Criticality level is used to decide which application is authorized to use the available resources for a

periodic of time. The criticality level of the applications must be maintained dynamically by a
centralized entity to ensure the fairness of the criticality level. In some cases, the application criticality

is depending on the state of the application and it could also be relative to the required resources. For

instance, the criticality of an application displaying temperature for the end-user might vary depending
on the location of the temperature sensor resource (e.g. the temperature of the server room is more

critical than the temperature of the living room).

Secondly, the need for accessing different resources to perform a task might have different priorities.

For instance an application which is responsible to detect a fire and log the events in a central storage

might have the highest priority to the smoke detector and heat sensors while logging the event task
to a storage device could have a lower priority. However the execution of the latter task must not

interfere with the first one. Therefore a separation of these two tasks must be provided by the system.

Because of these reasons, IMPReSS should allow developers to define criticality level for every resource

that is going to be requested by their application as well as changing these criticality levels depending

on the state of the applications. For the sake of simplicity we group the criticality level into three
simple levels (low, normal, and high). When a more complex ordering is required in the future, each

level can be assigned with a more detail numeric levels e.g.:

 Low 100 - 299

 Normal 300 – 599

 High 600-899

 1000 for the owner of the resource which must be prioritized all the time

Defining the application’s criticality for every single resource manually is not a scalable solution and

therefore in the future work of this deliverable, developers should be allowed to express these
requirements in a simple rule language pattern. However, for the sake of simplicity of our initial

implementation, we will not address this requirement first.

<Application id="App123" desc="fire alarm">

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 16 of 31 Submission March 1, 2014

 <State appState= “No Fire”>
<Resources>

<Query>

SELECT ?sensor ?precision ?resolution ?refObject
WHERE{

 ?sensor ssn:Observation domain:Temperature;
 ?sensor ssn:Precision ?precision .

 ?sensor ssn:Resolution ?resolution .
 ?sensor domain:RefObject ?refObject .

 }

</Query>
</Resources>

 </State>
</Sensing>

5.2 Resource Requirement

Allowing dynamic allocation of resources to applications, the required resources to perform intended

tasks must be expressed in the application description which then will be matched with the resource

description in order to find the most suitable resources for the applications. This means that the
language used to express the resource requirements depends on the metadata format used to describe

resources.

These resource requirements could be categorized into functional and non-functional requirements.

The functional requirements are related to the functions that the application need to perform while

the non-functional requirements are related to the performance that resources must deliver in order
to guarantee that the application could perform as intended. The functional requirements are much

related to what the application is designed to do. For instance, a weather monitoring application
requires different weather sensors such as thermometer, barometer, and possibly satellite imaging to

predict the cloud movements. The requirements for these sensors could be expressed in an abstract
way such as “a device that delivers the outside-temperature in Paris in Celsius with a precision of

0.001 degrees”.

As we cannot foresee every possible function that IoT application needs to do in the future, the
application description must be extendable and allows application developers to describe new kind of

resource and performance requirements.

A promising solution to describe resources is by using RDF which is designed as an information model

for metadata. RDF has been used in semantic web to provide a machine readable metadata of the

web content. Similarly, every resource such as sensors and actuators could be described using RDF.
Using RDF in this project allow us to take advantage of the components that have been well developed

such as using SPARQL and the query engine to match resource description with resource requirements
of the applications. Secondly, the project could re-use one of the sensor ontology approaches that are

described in section 5.2.1.1. Reusing this open ontology ensure the future compatibility of IMPReSS
components to external systems.

5.2.1 Functional Requirements of Applications

The IoT applications require devices that have capabilities such as sensing physical qualities of the
environment or performing actions which may influence the physical quality of the environment. To

enable a dynamic binding of devices, the requirement must be expressed in some degree of
abstraction.

The definition of device is very broad, therefore this deliverable does not intend to restrict it. We

discuss some types of devices and their possible classifications, which represent a good starting point
to analyze what kind of abstraction could be used for the project. However, the implementation should

not be limited to work only with devices mentioned in this section.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 17 of 31 Submission March 1, 2014

There exist several approaches for abstracting device capabilities for instance by introducing device
classifications. As mentioned above, in general devices can be divided as sensors and actuators that

are discussed more detailed in the following sections.

5.2.1.1 Sensors and their classifications

Sensors are devices capable of detecting physical qualities, such as electric current, mechanical torque,
temperature, among others (Kaltenbacher 2007). "Common commercially available sensors include

temperature sensors, pressure sensors, flow sensors, stress/strain sensors, accelerometers, dielectric
sensors, conductivity sensors, shock sensors, and vibration sensors (Fink 2012). There are different

ways of classifying them in types. For example, in (Fink 2012), they subdivide them into optical and

electrical sensors, depending on whether the signal is eventually monitored in an electrical or in an
optical way". However they go on to explain that there are ambiguities in this classification and that it

is a difficult problem to try to strictly classify sensors in definite non overlapping types. Later on they

broaden the classification to include humidity sensors, biosensors, mechanical sensors, electrochemical
sensors, piezoelectric sensors, acoustic wave sensors, among others. A different type is mentioned in

(Brauer 2006), where the author refers to magnetic sensors, which use magnetic fields that obtain an

electrical signal in order to sense motion. Some typical magnetic sensors mentioned in this source are:

Proximity sensors to determine presence and location of conducting objects for factory automation,

bomb or weapon detection, and petroleum exploration.

 Microphones that sense air motion (sound waves).

 Linear variable-differential transformers to determine object position.

 Velocity sensors for antilock(Compton, Henson et al. 2009) brakes and stability control in

automobiles.

 Hall effect position or velocity sensors (Brauer 2006).

On the other hand, (Bishop 2007) separates sensors in: linear and rotational sensors, acceleration
sensors, force measurement sensors, torque and power measurement, flow measurement,

temperature measurement, distance measuring and proximity sensors, light detection, image and

vision systems, integrated micro sensors and vision sensors. The variety of classifications available
shows that there is no standard way of categorizing sensors that applies for every domain of interest.

This is important to consider when designing an information model to describe sensors, because it
should not restrict them to any specific categorization, given that it might not apply or be useful for

all contexts.

There exists several effort to provide an ontology for classifying sensors such as the Semantic Sensor

Network (SSN) Ontology, as well as others that preceded it, such as CSIRO Sensor Ontology,

OntoSensor, MMI Device Ontology and CESN(Lefort, Henson et al. 2011). We provide a brief overview
of these approaches in the following sections.

5.2.1.1.1 The Semantic Sensor Network Ontology (SSN Ontology)

The W3C Semantic Sensor Network Incubator Group (SSN XG) (Compton, Barnaghi et al. 2012)
developed an ontology to describe sensors and sensor networks. They also studied and recommended

ways to use their ontology in systems based on the Open Geospatial Consortium’s (OGC) Sensor Web

Enablement (SWE) standards. The SWE standards focus on Web-connected sensors and sensor
systems in a framework called Sensor Web. These standards "provide description and access to data

and metadata for sensors", but "they do not provide facilities for abstraction, categorization, and
reasoning offered by semantic technologies".

The Semantic Sensor Network Ontology is a "formal OWL DL ontology for modeling sensor devices

(and their capabilities), systems and processes" (W3C 2011). It includes the process of sensing and
how sensors are deployed or attached to platforms. It describes as well systems of sensors and sensing

methods. The ontology "leaves the observed domain unspecified" (Lefort, Henson et al. 2011), but
when it is instantiated it allows domain semantics, units of measurement, time and time series, location

ontologies and mobility ontologies to become attached to it.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 18 of 31 Submission March 1, 2014

Figure 9. Overview of the Semantic Sensor Network Ontology classes and properties (W3C 2011)

Figure 9 shows an overview of this ontology, which extends further beyond the classes shown in this
figure. Each dotted rectangle represents a different module: Deployment, System, Operating

Restriction, Process, Device, Platform Site, Data, Skeleton, Measuring Capability and Constraint Block.
Each module has properties and classes "that can be used to represent particular aspects of a sensor

or its observations: for example, sensors, observations, features of interest (...), the measuring
capabilities of sensors, as well as their environmental, and survival properties of sensors in particular

environments" (W3C 2011).

The sensor ontology can be combined with the measurement unit ontology when the application
require specific unit of measurement from a sensor. Existing approaches that already define the

quantities of sensors and their units using ontologies or controlled vocabularies can be summarized as
the following points:

• MyMobileWeb Measurement Units Ontology (MUO):

This ontology is divided in two blocks. The first one contains definitions of classes and properties,
which "provide the essential vocabulary to define the semantics of measurements in domain

ontologies"(Berrueta, Polo et al. 2008), and is further divided in three parts: units of measurements,
physical qualities that can be measured, and common prefixes for units of measurements.

The second block contains several instances for the previously mentioned classes. In order to "correctly

formalize the different kind of measurement units and the relationships between them", a hierarchy
of measurement units was created in MUO. The classification considers whether a unit is base or

derived.

• Quantities, Units, Dimensions, Values (QUDV):

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 19 of 31 Submission March 1, 2014

Figure 10. QUDV Concepts diagram (OMG 2009)

The Object Management Group (OMG) has developed this conceptual model of systems of units and

quantities to be used in system models (OMG 2009). Figure 10 shows the concepts diagram of this
model presented in SysML, an alternative to UML developed by the OMG. It contains the central

concepts of System of Units, Unit, System Of Quantities, and Quantity Kind.

• Quantities, Units, Dimensions and Data Types in OWL and XML (QUDT):

The QUDT ontologies and related XML Vocabularies were being developed by TopQuadrant and NASA
(Hodgson and Keller 2011), with the purpose of defining a unified model for quantities, units,

dimensions and data types which were needed for NASA’s now canceled Constellation Program for

deep space exploration(Hodgson and Keller 2011). They collect a very large number of terms and take
into consideration both base and derived quantity kinds.

QUDT’s main class structure has similar concepts as QUDV, such as System Of Units, Unit, System Of
Quantities, Quantity Kind and Quantity. Table 3.1 is an extract of the Quantity Kind and Unit Systems

that are currently defined in the QUDT ontology.

Figure 11. Extract of the Quantity Kind and Unit Systems from the QUDT ontology (Hodgson and Keller 2011)

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 20 of 31 Submission March 1, 2014

5.2.1.1.2 CSIRO Sensor Ontology

This is a generic ontology to describe and reason about sensors, deployments, observations and
scientific models. "It is intended to be used for data integration, search, classification and

workflows”(Compton, Henson et al. 2009) It "was designed not to be ’complete’ in the sense that it

should provide a language to specify sensors, but is agnostic about domain concerns"(Lefort, Henson
et al. 2011).

It was considered to be a good basis for the SSN Ontology given several beneficial features. One of
them was the "Plug and Play" quality, i.e. "removing the ontology from domain concerns, issues of

how to represent units of measurements, locations, etc. The SSN Ontology should not include these,
but rather allow any such ontology to be plugged in" (Lefort, Henson et al. 2011).

5.2.1.1.3 OntoSensor

It was created to be a general knowledge base of sensors for query and inference, which consists of

a taxonomy of sensors and various properties. "The CSIRO and OntoSensor ontologies are each being
able to describe most of the spectrum of sensor concepts and thus cover a wider range of concepts

than the other ontologies" (Compton, Henson et al. 2009). OntoSensor contains more data and sensor
types than CSIRO, but CSIRO can describe composition and structure, therefore they have differences

in expressiveness.

According to the W3C, the OntoSensor ontology is incomplete and not updated since 2008. After being
reviewed by the SSN XG, it was not considered to be a good basis for the SSN Ontology because its

organization was not easily extendable or customizable (Lefort, Henson et al. 2011).

5.2.1.1.4 MMI Device Ontology

The Marine Metadata Interoperability Device Ontology describes oceanographic devices, sensors

(devices that measure things) and samplers (devices that pick up things). It includes descriptions of

measurements, systems, their components and their organization. By the time of the survey
in(Compton, Henson et al. 2009), it was a work in progress and intended to expand its scope, e.g.

adding concepts to describe physical properties. This ontology is also able to describe the platform to
which a sensor is attached, as well as the components of that platform.

It is important for this ontology to broadly categorize the devices, which helps users to discover sensors
of interest and to solve their set of use cases, some of which are similar to the application queries

listed in the problem statement in section 1.2:

1. Discover and plot data from common sensor types.

2. Classify devices according to functionality.

3. Find out devices that can be deployed from given platform.

4. Find devices associated with certain real-world properties.

5. Find all sensors that perform a particular measurement.

6. Find devices that can obtain certain physical samples.

7. Find all the devices that have a certain characteristic or meet certain criteria.

8. Find device or component that can measure a given real-world property or produce a given
output parameter [Int08].

According to the SSN XG, the best feature of MMI Device Ontology was that it has "system" and
"capabilities" as concepts and includes hierarchies (Lefort, Henson et al. 2011).

5.2.1.1.5 The Coastal Environmental Sensor Networks (CESN)

CESN ontology describes sensor networks for coastal observing, which includes "sensor types and a

DL and logic programming rules reasoner for making inferences about data and anomalies in
measurements. The CESN ontology has ten concept definitions for sensor instances and six individuals"

(Compton, Henson et al. 2009). It is very oriented at describing sensor types and organizing sensors
in hierarchies of sensing concepts(Compton, Henson et al. 2009).

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 21 of 31 Submission March 1, 2014

According to (Lefort, Henson et al. 2011), the CESN ontology restricts "sensor" to measure only one
"physical property", it defines "instrument" as a set of "sensors", and "deployment" refers to relating

"instruments" readings to "time and place of a real-world event". The SSN XG states that this is a

narrow scope which is only application specific, and that "the explicit mention of sensor types will
always be incomplete" (Lefort, Henson et al. 2011).

Both the SSN Ontology and CSIRO show that it is advantageous to design the ontology in such a way
that it can be used in different contexts. Two examples that apply the opposite of this are OntoSensor

and CESN, which offer expressive taxonomies of sensors types, but fail at being extendable or
customizable. In this regard, the design of the Resource Manager’s base ontology should not restrict

the application domain by providing a set of instances that most likely can never be complete and will

prevent it from being easily extended.

5.2.1.2 Actuators and their classifications

Actuators translate electrical current or voltage into other forms of energy, such as force and pressure,

speed and acceleration, temperature, gas composition, electromagnetic fields, light, etc(Steyaert, Van
Roermund et al. 2009). The author of (Bishop 2007) presents different types of actuators. First, there

are electrical actuators, such as diodes, thyristor, bipolar transistor, triacs, diacs, power MOSFET, solid

state relay, etc. Second, there are electromechanical actuators, which subdivide in direct current
motor, alternate current motor and stepper motor. Third, there are electromagnetic actuators, such

as solenoid-type devices, electromagnets, relay, hydraulic and pneumatic, cylinder, hydraulic motor,

airmotor, valves,etc. Forth, there are smart material actuators, such as piezo electric, electrostric- tive,
magnetostrictive, shape memory alloy, electrorheological fluids, ultrasonic piezo motor, etc. And

finally, there are micro- and nanoactuators, such as micromotors, MEMS thin film optical switches,
MEMS mirror deflectors, MEMS fluidic pumps and valves, NEMS drug dispenses, etc. According to

(Brauer 2006), magnetic actuators use magnetic fields to produce motion of small or large objects

using an electrical signal. Some typical magnetic actuators mentioned by this author are:

o Electrohydraulic valves in airplanes, tractors, automobiles, and other mobile or

stationary equipment.

o Fuel injectors in engines of automobiles, trucks, and locomotives.

o Biomedical prosthesis devices for artificial hearts, limbs, ears, and other organs.

o Head positioners for computer disk drivers.

o Loudspeakers.

o Contactors, circuit breakers, and relays to control electric motors and other equipment.

o Switchgear and relays for electric power transmission and distribution [Bra06, pp. 3-4].

From a different perspective, the author of (Pawlak 2006) presents two further types of actuators:

linear and rotary. "Rotary actuators, also called torque motors or torque actuators, are
electromechanical devices that develop torque with limited-angular travel. Linear actuators are force

motors that develop force with limited linear travel". These types can be further subdivided into more
specific types. Therefore, the previous consideration about not restricting the types of sensors also

applies to types of actuators, because there no standard way of classifying them that is useful in every

context.

5.2.2 Non-Functional Requirements of Applications

Applications are designed to fulfill certain performance parameters in order to perform the anticipated
functions properly and to ensure the expected user experience. The system performance is highly

depending on the combination of the hardware and software. This become more extreme on

embedded systems where hardware resources is very scarce, thus the software components usually
must be optimized for specific hardware to gain a maximum performance that is required for safety

critical applications, such as avionic system.

In the Internet of Things context, a dynamic environment is often foreseen. Less critical applications

may not be directly coupled with resources such as sensors and actuators since they may borrow

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 22 of 31 Submission March 1, 2014

resources from more critical applications when they are not utilized. Therefore the less critical
applications are not able to know in advance which resources are available. IMPReSS aims to tackle

this problem by linking the best matching application to the available resources to provide an optimal

system performance. For this purpose, applications are required to specify resource requirements
including the capabilities of devices that are expected, the performance and precession of devices or

even more specific requirements such as the vendor or model number. In addition, devices are tagged
with device description using the same vocabularies which allows the resource manager to match

application requirements to the device description. Application requirements may include execution
time constrain as depicted in the following xml:

 <Criticality level = "high">

 <level value = "899" />
 <!-- describe more detail time constrain -->

 <ExecutionTime>
 <Computing>

 <CPUSpeed Clock="400Mhz" core="2" averageUtilization<”80%”>

 <BestCase min="" max="" />
 <WorstCase min="" max="" />

 </Computing>
 </ExecutionTime>

 </Criticality>

A simpler approach could only express the average time required to from invoking the service until

the application receives the reply without having to define the CPU requirement:

 <Criticality level = "high">
 <level value = "899" />

 <!-- describe less detail time constrain -->

 <ExecutionTime>
 <Average min="" max="" />

 <WorstCase min="" max="" />
 </ExecutionTime>

 </Criticality>

5.2.2.1 Network QoS

In this section we review, the relevant Network QoS approaches as consideration when designing
algorithms for prioritizing services which will be discussed in the D4.3 Resource management and

access scheduler.

The IoT scenarios add more complexity into the classical mixed criticality problems by introducing

open-shared network medium into the system. The highly distributed nature of IoT systems and the

“Best Effort” nature of the Internet’s network layer with fist come first serve scheduling leads to
unpredictable response delays under heavy load periods. This may not even suitable for safety critical

systems and it requires soft real-time systems to anticipate communication delays and failures.

There exist many approaches to provide a quality of service (QoS) guarantees on different layers.

These approaches enable service providers to monitor bandwidth, the bandwidth availability, detect

congestion, and prioritize or throttle network traffic. For the sake of simplicity of this deliverable, we
will only review briefly QoS approaches that are relevant for IMPReSS.

On a packet switched network, two main techniques are available to implement QoS: Constraint-Based
Routing (CBR) and Traffic Engineering (TE) (Toguyeni and Korbaa 2007). CBR considers QoS

requirements such as delay, jitter, and bandwidth when making routing decisions. TE monitors and
controls the flows of traffic inside the network to achieve an even network utilization. An example of

TE is to utilize an admission control to grant or reject traffic flow based on the network load.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 23 of 31 Submission March 1, 2014

IETF proposes two different approaches. First, Integrated Service (IntServ) utilizes reservations to
guarantee a congestion free network traffic. However this approach requires a huge overhead to

maintain the state of network flows. Secondly, a more lightweight approach, Differentiated Service

(DiffServ) classifies packet flows based on three kinds of services:

 EF (Expedited Forwarding) : premium service with reliable, low delay and low jitter delivery,

 AF (Assured Forwarding) : assured service with reliable and timely delivery,

 Default (Best-effort): it is the normal service offered by IP networks

Alternatively, many internet service providers choose to provide QoS by generously over-provisioning

a network bandwidth that could handle the highest peaks based on capacity estimation. Although this
method is considered simple and more cost efficient by many ISP, it does not provide a real QoS

solution when the network flows grow beyond the anticipated peaks.

For a mobile ad-hoc networks there exist several approaches such as FQMM (Flexible QoS (Quality of

Service) Model for MANET (Mobile Ad Hoc Network)) which combines IntServ & DiffServ. SWAN

(Supporting Service Differentiation for Real-Time and Best Effort Traffic in Stateless Wireless Ad Hoc
Networks) uses a rate control for UDP and TCP best-effort traffic, and sender-based admission control

for UDP real-time traffic (Khoukhi and Cherkaoui 2010). Despite of these approaches, guarantying
hard deadlines in wireless networks are impossible due to unpredictable wireless interference in the

environment.

Another approach to provide QoS is to differentiate the access to internet servers that host web
services. This approach provides better quality of service to more critical tasks on the application layer.

Service Differentiating Internet Server (SDIS)1 provides an approach to prioritize service requests by
utilizing admission control for rejecting requests when the queue is almost full. It also exploits a priority

scheduling algorithm to serve the highest priority tasks first.

As an initial approach, IMPReSS focuses on providing end-to-end network related QoS parameters

including delay, jitter, available bandwidth, and packet loss which are acceptable for the applications.

Alternatively, the application could define simply the preferred end-to-end delay. Expressing these
requirements, the applications need to define the QoS parameters with minimum and maximum values

that are acceptable to execute the requests. In order to guarantee these requirements, the resource
manager will monitor these quality parameters and use this information to assign the suitable

resources to applications. An example how the network requirements could be expressed in the

application description:

 <Network end-to-end-delay preferred = "" max = "" / >

 <Network>

<Latency preferred = "" max = "" />
<Jitter preferred = "" max = "" />

 <Throughput preferred = "" min = "" />

 <PacketLoss preferred = "" max = "" />
 </Network>

5.2.2.2 Device time to failure requirement

Since the IoT scenarios often involve battery powered sensor nodes which have a limited lifetime, the

applications might be interested in using devices which will be active for a predictable time frame.

Enabling this feature, the application may describe their expectation of the device lifetime. For instance
an application may define that it requires a temperature sensor installed at a location that will last for

a year.

 <TimeToFailure min = "100" max = "365" unit = "days" />

1 http://spirit.cs.ucdavis.edu/pubs/journal/sdis.pdf

http://spirit.cs.ucdavis.edu/pubs/journal/sdis.pdf

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 24 of 31 Submission March 1, 2014

5.2.2.3 Trust and Security requirements

In IoT trust and security requirements have many confluences and similarities with performance and

reliability requirements. Section 3 presented security objectives in three main categories:

confidentiality, integrity, and availability. Availability of the resource can be affected by internal causes
in the system such as poor reliability of network or external causes such as denial of service attacks.

The former cause relates more to reliability requirement and the latter to security requirement, but
still both causes affects to same objective, availability.

The minimum security level needed in the resources such as sensors and actuators depends on the
phenomenon they are measuring or what they are controlling. If sensor measurement is considered

as confident information, application using the information is not allowed to change the level of the

security below the minimum level required. Therefore in the cases where multiple applications are
using the same resource, none of these applications are allowed to use lighter security mechanisms

than the minimum level required by resources.

Since IMPReSS aims at providing a development tools for novice developers which do not have an

extensive knowledge of security, we will provide developers with a simple abstraction of the security

levels that could be understood by non-expert developers such as “No Security”, “Low”, “Medium”,
“High”.

These levels will be mapped onto different specific encryption algorithms and trust frameworks.
Application using IMPReSS platform needs to support the same security mechanism than the resources

are using. Therefore supported security mechanisms need to be expressed both in the application
description and resource description in order to bind appropriate resource with application.

From the application point of view, most important categories for the security and trust are integrity

and availability. For example factory automation has strong requirements for information integrity and
availability. Therefore when designing the application, required integrity level for the information needs

to be based on the severity of the consequences. Application description will express the required
integrity level of the resource. Levels need be easy to understand such as high, medium and low and

then mapped to real integrity verification solutions such as SHA and MD5.

Some of the resources are necessary for the application in order to work properly and some are useful
but not totally necessary. Therefore availability level needs to be expressed using the similar levels

that integrity levels.

Security related definitions in the application description can be utilized in two different cases. First,

the most appropriate resource for application can be selected partly based on the security definitions.

For example, applications requiring high integrity level for temperature measurement will only be
offered the resources supporting e.g. SHA1 verification or better. Secondly, security level of the

resource can be adjusted on run-time based on the current risk level. Trust and security requirements
may influence the performance of the system and increase end-to-end delays. For instance, there are

many trust frameworks that require an exchange of certificates and validation from an independent
authority before data transmission is started. Therefore it is useful to use as low security level as

possible. For example, if the given resource is used in secure location, security level can be adjusted

to minimum level.

There are several security ontologies available for describing security both for resources and

applications. Some of the security related ontologies are aimed to use when designing the applications
and some ontologies can be used for resource and service discovery. Following sections present some

of the current ontologies related to security.

5.2.2.3.1 NRL Security Ontology

NRL Security ontology (A.Kim, J.Luo, et al. 2005) focuses on annotation of functional aspects of

resources using OWL. This ontology is capable of representing security statements like mechanisms,
protocols, algorithms and credentials can be represented and it can be utilized to any electronic

resource. NRL Security ontology is composed of seven sub-ontologies, which create the overall

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 25 of 31 Submission March 1, 2014

ontology. According to (A.Kim, J.Luo, M. Kang, 2005) the subontologies of NRL Security ontology are
following:

1. Main Security ontology: an ontology to describe security concepts

2. Credentials ontology: an ontology to specify authentication credentials

3. Security Algorithms ontology: an ontology to describe various security algorithms

4. Security Assurance ontology: an ontology to specify different assurance standards

5. Service Security ontology: an ontology to facilitate security annotation of semantic Web

services

6. Agent Security ontology: an ontology to enable querying of security information

7. Information Object ontology: an ontology to describe security of input and output parameters

of Web services

5.2.2.3.2 SOA security ontology

SOA security ontology (P.Savolainen, et al. 2007) introduces the taxonomy of information security,
focusing on service oriented architectures. Service taxonomy presented in this paper embodies five

different aspects: Security assets, security attributes, security threats, security solutions and security
metrics.

Figure 12. SOA security ontology

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 26 of 31 Submission March 1, 2014

5.2.2.4 Quality of device capabilities

Figure 13. Enumeration of Measurement Properties in the SSN Ontology (W3C 2011)

Each device may have quality that can be associated with its capability. For instance, a camera sensor

has resolution, color depth, and image sensor size, which is relevant to determine the quality of the
picture that the camera could produce. These quality parameters vary greatly from device to device

and therefore must be defined by the device manufacturer.

However there are some qualities that are common for different type of devices such as for sensors

sampling rate, sensing distance, operating temperature, etc. There exist also similar qualities with

different unit of measurements such as precision and accuracy.

Figure 13 zooms in the SSN ontology. On some of these modules and shows that Measurement

Capabilities are related to a collection of Measurement Properties of a sensor in specific conditions. All
the possible Measurement Properties of a sensor are shown represented as subclasses, some of which

are: drift, sensitivity, selectivity, accuracy, precision and latency. There are further relationships in the

SSN Ontology between Measurement Capability, Measurement Property and other predicates like
"forProperty" and "inCondition" (W3C 2011).

We define an abstraction of the functional and non-functional requirements into the following
attributes. For every required resources, application developers must define the required capability for

instance a sensor has a “sensing” capability that can be further elaborated by using different attributes
such as what kind of physical world events (observable) that the sensor is able to sense, to which

object the sensor is measuring, what kind of precision, accuracy, and range. An example how the

requirements could be expressed as the following:

 <Capability>

 <Sensing observable="temperature" unit=”Celcius” objectReference = "room xyz">
 <Precision min="0.01" max="0.09" />

 <Accuracy min="0.01" max="0.09" />

 <Range min="0.01" max="0.09" />
 </Sensing>

 </Capability>

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 27 of 31 Submission March 1, 2014

5.3 Serialization and Format of the application descriptions

Figure 14. Application description serialized in XML.

So far for this deliverable we have presented an example of parameters that could be requested from

the application developers’ perspective. The format and serialization chosen for this deliverable is in
XML for the sake of readability. However, we foresee that IMPReSS would offer different type of

serialization that the developers could choose from. For instance, the serialization of the application

and device description could be done depending on the available computing power to parse and
process the data format. When limited computing power is not a primary concern but the readability

of the descriptions is more important, the developers may serialize the descriptions in XML or JSON
format. However if the devices and applications have a very limited computing power, the application

and device description should be serialized more efficiently such as using a binary format.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 28 of 31 Submission March 1, 2014

Since we are planning to use RDF to maintain the actual state of the resources, the application
requirements could be translated into SPARQL which could be directly use by the resource manager

to find the matching requirements and available resources. This will simplify the implementation of

the resource manager, however during our requirement engineering we found that the majority of
developers are not familiar with semantic web technology including SPARQL. Therefore if we decide

to use SPARQL for expressing the application requirement, we need to provide a user friendly interface
able to generate SPARQL. However the final decision will be made during the implementation phase.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 29 of 31 Submission March 1, 2014

6 Summary and Conclusions

In this deliverable we presented the overview of current approaches for handling MC systems and the

envisioned system to enable MC in the Internet of Things scenario. We elaborated the additional

problems that IoT introduces into the classical MC problems such as the current internet infrastructure
based on best effort assumption. This makes IoT systems cannot guarantee the hard deadlines as

required by safety critical systems. However mixed criticality is still a valid problem for IoT system that
shares distributed resources to reduce the overall cost of the system.

IMPReSS aims at adopting mixed criticality approaches for IoT to provide a best effort solution in

maximizing the system’s performance while lowering the overall system cost. To achieve this vision
we reviewed similar approaches that have been investigated for providing internet QoS. Many of these

approaches differentiate services on different network layers based on certain parameters such as the
content of the traffic, the consumer, or by utilizing a reservation system.

We propose to manage the distributed resources such as sensors and actuators from a centralized
resource manager supported by local resource manager. The centralized resource manager controls

the resource access in a global level aiming both at optimal use of resources in the system and solving

conflicts between mixed criticality applications by using prioritization algorithms that will be define in
the “D4.3 Resource management and access scheduler”. A central component in the global level

resource management is a knowledge base that contains representations of resources including
functional capabilities and non-functional properties such as CPU and memory utilization and end-to-

end network delay. This knowledge base is used by the global level resource manager to selects the

most suitable resource for each application.

The local resource manager monitors the local resource utilization and reports this to the global

resource manager. Moreover, the local resource manager administers the access to the resource in a
way that only applications that have obtained a reservation from the global resource manager could

access it. The local resource manager will need also to schedule the access to the resource based on
the application criticality level.

Enabling the matching between application and requirements, the resources must have a metadata

description containing information such as device capabilities, quality parameters such as device
precision, accuracy, network end-to-end delay, etc. We discussed the current approaches proposed

as ontology that can be extended for this project. Currently we see SSN ontology as a promising
solution since it provides a basic schema that we can extend to describe actuators and domain specific

quality parameters. Moreover, we have discussed different relevant parameters which were elicited

during requirement workshop. These parameters will be used as starting point that can be extended
or slimed down depending on the developer’s need when building IoT systems using IMPReSS.

We also discussed the possibility of having different serialization format for the resource and
application description depending on whether readability or system performance is the focus of the

development. In this deliverable we presented an example of application description in XML format

for the sake of readability. The XML description could be translated into SPARQL query by the resource
manager for querying the most suitable devices for the applications. Another solution that we would

like to investigate is providing users with a simple form-based user interface that generates SPARQL
query to keep a clear separation of concern between the description language processing and the

resource management.

In conclusion, we believe that the quality parameters used to differentiate services depends on the

application domain therefore IMPReSS should not try to provide every possible parameters. Thus, in

this deliverable we provide several quality parameters which are mostly used cross domains such as
end-to-end delay, priority. IMPReSS should also provide a tool that allows developers to extend these

parameters without having the knowledge about RDF and SPARQL.

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 30 of 31 Submission March 1, 2014

IMPReSS D4.1.1 Initial application classification language

Document version: 1.0 Page 31 of 31 Submission March 1, 2014

7 Bibliography

Baruah, S., et al. (2010). Towards the design of certifiable mixed-criticality systems. Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE, IEEE.

Berrueta, D., et al. (2008). "Measurement Units Ontology." URL: http://idi. fundacionctic. org/muo/muo-

vocab. html.

Bishop, R. H. (2007). Mechatronic systems, sensors, and actuators: fundamentals and modeling, CRC press.

Brauer, J. R. (2006). Magnetic actuators and sensors, John Wiley & Sons.

Compton, M., et al. (2012). "The SSN ontology of the W3C semantic sensor network incubator group." Web

Semantics: Science, Services and Agents on the World Wide Web 17: 25-32.

Compton, M., et al. (2009). A Survey of the Semantic Specification of Sensors. SSN.

Fink, J. K. (2012). Polymeric Sensors and Actuators.

Hodgson, R. and P. J. Keller (2011). "QUDT-quantities, units, dimensions and data types in OWL and XML."

Online (September 2011) http://www. qudt. org.

Kaltenbacher, M. (2007). Numerical simulation of mechatronic sensors and actuators, Springer.

Khoukhi, L. and S. Cherkaoui (2010). "Intelligent QoS management for multimedia services support in

wireless mobile ad hoc networks." Computer Networks 54(10): 1692-1706.

Lefort, L., et al. (2011). "Semantic sensor network xg final report." W3C Incubator Group Report 28.

OMG (2009). "Quantities, Units, Dimensions, Values (QUDV)." Retrieved january 24, 2014, from

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:quantities_units_dimensions_values_qudv.

Pawlak, A. M. (2006). Sensors and Actuators in Mechatronics: Design and Applications, Taylor & Francis.

Steyaert, M., et al. (2009). Analog circuit design: high-speed clock and data recovery, high-performance

amplifiers, power management, Springer.

Toguyeni, A. and O. Korbaa (2007). Quality of service of internet service provider networks: State of the art

and new trends. ICTON Mediterranean Winter Conference, 2007. ICTON-MW 2007.

W3C (2011). Report work on the ssn ontology, W3C.

http://idi/
http://www/
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:quantities_units_dimensions_values_qudv

