

(FP7 614100)

D2.2.1 SDP Initial Architecture Report

27 February 2014 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation
Target Outcome: b) Sustainable technologies for a Smarter Society

http://www.cnpq.br/index.htm

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 2 of 24 Submission date: 27 February 2014

Document control page

Document file: D2.2.1 SDP Initial Architecture Report.doc

Document version: 1.0

Document owner: Carlos Kamienski (UFABC)

Work package: WP2 – Requirements Engineering and SDP Architecture

Task: Task 2.3 SDP Architecture

Deliverable type: R (Report)

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.5 Carlos Kamienski (UFABC) 12/02/2014 First draft ready

0.6 Carlos Kamienski (UFABC) 14/02/2014 Second draft ready

0.8 Carlos Kamienski (UFABC) 25/02/2014 Third draft ready

1.0 Carlos Kamienski (UFABC) 28/02/2014 Final version submitted to the EC

Internal review history:

Reviewed by Date Summary of comments

Stenio Fernandes (UFPE) 13/02/2014 Minor corrections

Matts Ahlsén (CNET) 18/02/2014 Approved with comments

Jesper Thestrup (IN-JET) 27/02/2014 Approved with comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 3 of 24 Submission date: 27 February 2014

Index:

1. Executive summary ... 4

2. Introduction .. 5
2.1 Purpose and context of this deliverable ... 5
2.2 Scope of this deliverable.. 5
2.3 Document Structure.. 6

3. The IMPReSS System Development Platform .. 7

4. Software Architecture and ISO 42010 Standard 9
4.1 Software Architecture ... 9
4.2 The ISO/IEC/IEEE 42010:2011 Standard ... 9
4.3 Architecture Views .. 9
4.4 Architecture Framework .. 10
4.5 IoT Architectural Reference Model... 10

5. IMPReSS Software Architecture .. 12
5.1 IMPReSS Stakeholders .. 12
5.2 IMPReSS Architecture Views and Layers .. 12
5.3 IMPReSS Partner’s View .. 14
5.4 IMPReSS Developer’s View .. 16
5.5 IMPReSS Integrator’s View .. 17
5.6 IMPReSS Recipient’s View .. 17
5.7 IMPReSS Architecture vs. Effort Distribution .. 18

6. Requirements vs. Architecture .. 20
6.1 Functional Requirements to Architecture Mapping 20
6.2 Non-Functional Requirements to Architecture Mapping 21

7. Conclusion ... 23

8. References .. 24

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 4 of 24 Submission date: 27 February 2014

1. Executive summary

IMPReSS is a EU-Brazil cooperation project aiming at providing a Systems Development Platform

(SDP), which enables rapid and cost effective development of mixed criticality complex systems
involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with

users and external systems. The IMPReSS development platform will be usable for any system
intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint
in public buildings, enhancing the intelligence of monitoring and control systems as well as

stimulating user energy awareness.

The IMPReSS Platform consists of a set of technologies that help to build general-purpose
applications accessing to a plethora of sources, such as information from the physical world,

analyzing and fusing relevant data, and performing monitoring and control operations on complex
system. The IMPReSS project aims at solving the complexity of system development platform (SDP)

by providing a holistic approach that includes an Integrated Development Environment (IDE),

middleware components, and a deployment tool.

The architecture presented here is used as the reference for building IMPReSS applications and as

such, it provides views on different design aspects and concerns of stakeholders of the IMPReSS
platform. A unique software architecture plays a key role in maintaining partners aware of the

IMPReSS platform capabilities so that they can always refer to when designing and implementing
particular modules. The architecture establishes fundamental concepts and properties of the system

contextualized within its environment and expressed by their elements and relationships and

evolution guidelines.

This report covers functional as well as non-functional aspects that are important to support the

integration of different tasks involved in this project. The design process of the architecture has
been influenced by two key elements: the original specification and the requirements recently

gathered. The starting point for the initial specification of the IMPReSS Architecture is the original

platform as proposed in the IMPReSS project proposal (i.e. DoW – Description of Work). Also, the
software architecture both is influenced and influences the requirements, whose preliminary version

has already been presented by the IMPReSS consortium.

Software Architectures have been discussed and used for some time in the software engineering

literature and they evolved over the years, adopting key concepts such as views, viewpoints, and

frameworks. After an initial process, that involved discussions and brainstorming, this architecture
has been conceived.

The IMPReSS Software Architecture is composed of four views, each one representing one
stakeholder’s view. The stakeholders identified for the IMPReSS Architecture are: a) IMPReSS

Partners; b) Application Developers; c) Solution Integrators; d) Final Recipients. The concept of user
is spread over these four stakeholders and therefore the term has not been adopted to avoid

misunderstandings.

The IMPReSS Systems Development Platform (SDP) is divided into two main components, which are
the IMPReSS IDE and the IMPReSS Middleware. Both communicate through the IMPReSS

Middleware API. The IDE runs in foreground and it is directly used by developers for building
applications, whereas the middleware runs in background in it is invoked by the IDE modules as well

as by external software and interacts with resources.

Functional and non-functional requirements have been mapped to the architecture views and
modules, in order to guarantee that requirements are fulfilled by one or more components and

therefore responsibilities can be tracked through the implementation.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 5 of 24 Submission date: 27 February 2014

2. Introduction

2.1 Purpose and context of this deliverable

The aim of the IMPRESS project is to provide a Systems Development Platform (SDP) which enables

rapid and cost effective development of mixed criticality complex systems involving Internet of

Things and Services (IoTS) and at the same time facilitates the interplay with users and external
systems. The IMPRESS development platform will be usable for any system intended to embrace a

smarter society. The demonstration and evaluation of the IMPRESS platform will focus on energy
efficiency systems addressing the reduction of energy usage and CO2 footprint in public buildings,

enhancing the intelligence of monitoring and control systems as well as stimulating user energy

awareness.

The IMPRESS project aims at solving the complexity of system development platform (SDP) by

providing a holistic approach that includes an Integrated Development Environment (IDE),
middleware components, and a deployment tool. The main technical and scientific objectives of the

IMPRESS project are:

 Developing an Integrated Development Environment (IDE) to facilitate Model-Driven

Development of Smarter Society Services.

 Providing a Service-Oriented Middleware to support Mixed Criticality Applications on

Resource-Constrained Platforms.

 Developing easy-to-use and configurable tools for Cloud-based Data Analysis and

Context Management.

 Develop Network and Communication management solution to handle the heterogeneity

of Internet of Things.

 Creating efficient Deployment Tools for Internet of Things applications.

The project’s results will be deployed in the Teatro Amazonas Opera House as an attractive
showcase to demonstrate the potential of a smart system for reducing energy usage and CO2

footprint in an existing public building. Another deployment will be in the campus of the Federal

University of Pernambuco.

The IMPRESS platform re-uses and extends results from several existing EU projects on Internet of

Things, middleware and energy efficiency and builds on Open Source platforms. The IMPRESS
project is carried out by a consortium already experienced with successful EU-Brazil collaboration.

The present document is the output of the task T2.3, whose main goal is to specify the general

architecture of the IMPReSS system, including aspects related to the identification of the major
system components, how they should interact, and define their external interfaces. The main

beneficiaries of the document are the workpackages 2, 3, 4, 5, 6 and 7 that will implement a
prototype of the system based on the architecture described here.

2.2 Scope of this deliverable

The IMPRESS development platform consists of a set of technologies that help to build general-
purpose applications accessing to a plethora of sources, such as information from the physical world,

analyzing and fusing relevant data, and performing monitoring and control operations on complex
systems. This is achieved through the definition of a number of tools and pre-defined modules that

can be managed and combined in order to define a specific logic flow.

This deliverable introduces the Initial IMPReSS Software Architecture, which is the starting point for
the design and implementation of the IMPReSS Platform. During the development of the various

modules of the IMPReSS Platform different groups of partners will refine them so that they are able

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 6 of 24 Submission date: 27 February 2014

to implement the module’s functionalities. This is a distributed process that will generate important

feedback for the IMPReSS Architecture that will be presented in its final form in Deliverable D2.2.2.

This report covers functional as well as non-functional aspects that are of paramount importance to

support the integration of different tasks involved in this project. The starting point for the initial
specification of the IMPReSS Architecture is the original platform as proposed in the IMPReSS

project proposal (i.e. DoW – Document of Work). After a discussion and brainstorming process, the
IMPReSS architecture has been conceived.

The IMPReSS Software Architecture is composed of four views, each one representing one

stakeholder’s view. The software architecture both is influenced and influences the requirements,
which have been preliminarily presented in Deliverable D2.2.1 (IMPRESS 2014).

2.3 Document Structure

The reminder of this document is organized in four chapters.

 Chapter 3 (The IMPReSS System Development Platform) describes the IMPReSS concept

as background knowledge for the architecture discussion.

 Chapter 4 (Software Architecture and ISO 42010) explains the design process used in

the architecture specification.

 Chapter 5 (IMPReSS Software Architecture) presents the architecture of the system.

 Chapter 6 (Requirements vs. Architecture) shows the most important requirements in

IMPReSS Architecture.

 Chapter 7 (Conclusion) presents the final thoughts about the proposed architecture.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 7 of 24 Submission date: 27 February 2014

3. The IMPReSS System Development Platform

The IMPReSS development platform consists of a set of technologies organized into a set of
modules. In Error! Reference source not found. the IMPReSS SDP is presented according the

DoW (Description of Work).

Figure 1 - The IMPReSS Platform (as proposed in the Description of Work – DoW)

The Application-domain Resources represents all the hardware and software that IMPRESS

middleware can interoperate with. These entities are physical world devices (e.g. sensors and
actuators, as well as hardware in general, such as smart phones and tablets), external and third-

parties systems, and open and proprietary services.

The resources are connected to the IMPReSS middleware through Service Proxies that expose their

functionalities. Service Proxies uses a Resources Adaptation Interface (RAI) that allows the IMPReSS
middleware to connect the Application-domain Resources and expose their functionalities through a

common interface.

Monitoring and Control Module aims to optimise complex system operations acting on available
Application-domain Resources exposed by Service Proxies. This module performs also Resource

Management operations for solving conflicts and scheduling and management of mixed-criticality.
This will allow the system to efficiently share the available resources instead of having a dedicated

resource for each application.

The Data, Policy, and Knowledge Storage is responsible for managing the persistence data and
information. This component makes the upper layers and modules independent of where the data is

stored, whether locally or in the cloud. Data and information to be maintained include for instance
historical sensor data, analysed information, learned knowledge, policies, configurations, etc. Within

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 8 of 24 Submission date: 27 February 2014

this component, the Data Warehouse stores raw data from Application-domain Resources and

enhanced data and information inferred by sensor and data fusion modules.

The Sensor and Data Fusion Module processes inputs from available Application-domain Resources

by aggregating and filtering raw data and events (e.g. to ease scalability storing data with a
granularity suitable for the application, to perform high-data-rate applications etc.) and combining

data to synthesize new and enhanced application-domain information (e.g. calculating the average
temperature in a room using temperature measures from sensors deployed in the room or the

variable resistor values from voltage and current measures, etc.).

The Context Manager Module manages context information using data extracted from available
Application-domain Resources. It associates context information to raw and enhanced values. For

example, stating that temperature sensor, which its unique identifier is ‘1234’, is deployed in the
room identified as ‘bedroom’ on the ‘3rd floor’ of the building ‘xyz’ sited at ‘50th Avenue’, belonging to

‘abed’ company.

The Data Analysis & Support System Module extracts in a short time the information coming from
large amounts of data, in order to use this information in the decision-making processes. It provides

support to the control algorithms performed in the Monitoring and Control Module and generates
suggestions and alarms to user-side application. This module is in charge of performing runtime

analysis, allowing the system to be aware of its current status and adapting its operation depending
on the context information.

The Configuration Tool sets the policies of the whole platform. It shows to the platform Manager all

the devices and modules belonging to the system, allowing to configure the parameters of the
modules of the overall platform.

The Composition Tool allows the interconnection of various modules belonging to the platform. This
module is a commissioning tool used by the platform Integrator that allows defining the connections

among the different modules needed to implement specific application logic.

This framework is inspired by the SNMP architecture and aims at performing the configuration and
integration of hardware and software resources. It is composed by two components: a Configuration

and Composition Manager and Configuration Agent. The Configuration and Composition Manager is
the module in charge of managing the configuration and composition processes of the other

modules into the platform; it works as an interface between the Configuration and Composition
Tools and the various modules within the platform. A Configuration Agent is associated with each

module of the platform. It exposes configuration and control parameters of a specific module to the

Configuration and Composition Manager. The Configuration Agent operates actually the
configuration commands coordinated by Configuration and Composition Manager. The association of

an agent to each module makes the system more expandable and scalable from the point of view of
configuration issues.

The APIs for interfacing the IMPReSS provide methods for combining different modules and

commissioning the specific logic flow. The APIs are useful to set the parameters of the platform
modules to make the system effective and to operate on application level functionalities (e.g. for

system monitoring and control, fine-grained configuration, etc.)

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 9 of 24 Submission date: 27 February 2014

4. Software Architecture and ISO 42010 Standard

This section presents the main concepts related to software architectures and the ISO 42010
standard and is aimed at levelling the knowledge of the readers on the motivation for and

terminology of the area. This is needed because Section 5 extensively uses the concepts exposed in
this section.

4.1 Software Architecture

The concept of Software Architecture has been around for some time but still there is no formal and
well-accepted definition. Nevertheless, some definitions do exist and they are widely used, such as

the one given by Kruchten (Kruchten 2003) and repeated by others:

“Software architecture encompasses the set of significant decisions about the organization
of a software system including the selection of the structural elements and their interfaces
by which the system is composed; behavior as specified in collaboration among those
elements; composition of these structural and behavioral elements into larger subsystems;
and an architectural style that guides this organization. Software architecture also involves
functionality, usability, resilience, performance, reuse, comprehensibility, economic and
technology constraints, tradeoffs and aesthetic concerns.”

The software architecture intuitively denotes the high level structures of a software system. It can
be defined as the set of structures needed to reason about the software system, which comprise the

software elements, the relations between them, and the properties of both elements and relations
(Clements 2010). The term software architecture also denotes the set of practices used to select,

define or design software architecture. Documenting software architecture facilitates communication

between stakeholders, captures early decisions about the high-level design, and allows reuse of
design components between projects (Bass 2012).

Software Architecture also plays a key role as a bridge between requirements and implementation
and therefore it assumes higher relevance to the IMPReSS project.

4.2 The ISO/IEC/IEEE 42010:2011 Standard

The ISO 42010 standard (ISO 2011), also called “Systems and Software Engineering - Architecture
Description” defines requirements on the description of system, software, and enterprise

architectures. It aims to standardize the practice of architecture description by defining standard

terms, presenting a conceptual foundation for expressing, communicating and reviewing
architectures, and specifying requirements that apply to architecture descriptions, architecture

frameworks, and architecture description languages.

The standard defines software architecture as “fundamental concepts or properties of a system in its

environment embodied in its elements, relationships, and in the principles of its design and

evolution”. Although this definition is short, it is coherent with the Kruchten definition presented in
section 4.1.

ISO 42010 is based on the older IEEE 1471 standard (IEEE 2003). Following its predecessor ISO
42010 makes an important distinction between architectures and architecture descriptions.

Architecture descriptions are used to manage modern systems to improve communication and co-
operation, enabling them to work in an integrated and coherent fashion. An architecture description

includes one or more architecture views.

4.3 Architecture Views

A view addresses one or more of the concerns held by the system’s stakeholders, expressing the
architecture of the system-of-interest in accordance with an architecture viewpoint. An architecture

view is a collection of models representing the architecture of the whole system relative to a set of

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 10 of 24 Submission date: 27 February 2014

architectural concerns. There are two key reasons to use architecture views. Firstly, because they

can better express the system by using different notations, which make it easier to understand and
consequently to implement. Secondly, because views are important mechanisms for achieving

separation of concerns in complex systems.

A well-known example of using views is the 4+1 Views of Software Architecture (Kruchten 1995). It

describes a view model composed of four views - logical, development, process and physical view –
with an additional use case view (the +1).

Viewpoints have two important roles in software architectures: establishing conventions about views

and framing concerns for stakeholders. An architecture viewpoint frames one or more concerns. A
concern can be framed by more than one viewpoint. A view is governed by its viewpoint: the

viewpoint establishes the conventions for constructing, interpreting, and analyzing the view to
address concerns framed by that viewpoint. Viewpoint conventions can include languages, notations,

model kinds, design rules, and/or modelling methods, analysis techniques, and other operations on

views.

4.4 Architecture Framework

An architecture framework establishes conventions, principles, and practices for the description of

architectures within a specific domain of application and/or community of stakeholders. A framework
provides a generic universe and a common vocabulary within which we can all cooperate together -

to address a specific issue.

Frameworks do not have to be comprehensive, but they should be leveraged to provide at least a

starter set of the issues and concerns that must be addressed in the development of architecture.

Frameworks usually use a set of components:

 Views/Presentation: Provide the mechanisms for communicating the information about

the relationships in the architecture.

 Methods: Provide the disciplines for gathering and organizing the data. Construct the

views in a way that helps insure integrity, accuracy, and completeness.

 Knowledge: Support the application of the methods and the use of tools for views.

Over the years different frameworks have been defined, aiming at serving as reusable artifacts by

software architects.

4.5 IoT Architectural Reference Model

After much discussion about the core concepts of the IoT (Internet of Things) for several years, in

2009 a group of researchers from more than 20 large industrial companies and research institutions
joined forces to lay the foundation for the much needed common ground or a common

“architecture” for the Internet of Things: the IoT-Architecture project (IoT-A) was born. IoT-A has

become the European Commission’s flagship project in the European Union’s Seventh Framework
Program for Research and Development with respect to establishing an architecture for the Internet

of Things (Bassi 2013).

The central decision of the IoT-A project was to base its work on the current state of the art, rather

than applying a clean slate approach. As a result, common traits have been derived to form the

baseline of the IoT Architectural Reference Model (ARM). This has the major advantage of ensuring
that the model is backward-compatible, as well as the adoption of established, working solutions for

various aspects of the IoT (Bassi 2013).

Figure 2 depicts a functional model of IoT Architecture emphasizing the communication flow among

its components. The Functional Model contains seven longitudinal Functionality Groups (light blue)

complemented by two transversal Functionality Groups (Management and Security, dark blue).
These transversal groups provide functionalities that are required by each of the longitudinal groups.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 11 of 24 Submission date: 27 February 2014

The policies governing the transversal groups will not only be applied to the groups themselves, but

do also pertain to the longitudinal groups.

Figure 2 - IoT Architecture

A Physical Entity is represented in the digital world by a Virtual Entity. The IoT Process Management
FG relates to the conceptual integration of business process management systems with the IoT

ARM. The Service Organisation FG is a central Functionality Group that acts as a communication hub

between several other Functionality Groups. The Virtual Entity and IoT Service FGs include functions
that relate to interactions on the Virtual-Entity and IoT-Service abstraction levels, respectively. The

Communication FG abstracts the variety of interaction schemes derived from the many technologies
(Device FG) belonging to IoT systems and provides a common interface to the IoT Service FG. It

provides a simple interface for instantiating and for managing high-level information flow. In

particular, the following aspects are taken into account: starting from the top layers of the ISO/OSI
model it considers data representation, end to end path information, addressing issues (i.e.

Locator/ID split), network management and device specific features. The Management FG combines
all functionalities that are needed to govern an IoT system. The Security Functionality Group

(Security FG) is responsible for ensuring the security and privacy of IoT-A-compliant systems.

Since they have similar purposes, the IoT Reference Architecture share similarities with IMPReSS
Architecture and it will be helpful in driving forthcoming decisions.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 12 of 24 Submission date: 27 February 2014

5. IMPReSS Software Architecture

The IMPReSS Initial Software Architecture has been inspired by the original IMPReSS platform
description, as illustrated by Figure 1. However, some modifications were made due to new

requirements and features, as well as a more mature view of the IMPReSS needs. In the remaining
part of this section, subsection 5.1 introduces the four IMPReSS stakeholders and section 5.2 defines

architecture views, which are in turn described from section 5.3 through section 5.6.

5.1 IMPReSS Stakeholders

The IEEE Std. 1471 definition of stakeholder (IEEE 2000) was adopted: “an individual, team, or

organization (or classes thereof) with interests in, or concerns relative to, a system”. For IMPReSS

the choice of stakeholders was of paramount importance, due to its direct translation into
architecture views.

Four types of stakeholders have been identified, who may deal with the IMPReSS SDP. Each
stakeholder has interests and concerns, which influence the requirements and also the architecture

design. These stakeholders are:

• Partner: The IMPReSS Partner who contributes to the development of the IMPReSS System
Development Platform (SDP). Partners considered here are the European ones - FIT, CNET,

IN-JET, ISMB, VTT – and the Brazilian ones - UFPE, UFAM, TAO, CHESF, ENG, UFABC.
IMPReSS Partners have a natural broader view of the internal components of the architecture,

because they need to put them to work together by orchestrating components and dataflows.

• Developer: The Application Developer who uses the IMPReSS SDP to develop IMPReSS-

enabled Applications. Target applications are energy efficiency systems addressing the

reduction of energy usage and CO2 footprint, within the context of the Internet of Things
(IoT).

• Integrator: The Solution Integrator who installs, configures, deploys application, and
connects them to other external services and hardware components. Different people or

organizations may play the role of integrators. Integrators must have special interfaces (GUIs

actually, in different flavors, such as Web-based and smartphone/tablet apps) with the system
so that they are easily able to configure the system to operate under different circumstances

in different environments.

• Recipient: The Final Recipient, who is affected by the solution, such as university professors,

students and staff, employees of a company (with different skills and positions), audience of a
theater, or even house home owners. These people can interact with the solution by means of

different interfaces (web-based, apps) for configuring certain parameters and receiving real

time information.

The term “user” was intentionally avoided because it can assume different meanings that vary

according to different contexts. For example, the typical user of IMPReSS is an Application
Developer rather than an end user, because the purpose of IMPReSS is to build a development

platform, which by definition is used by developers.

5.2 IMPReSS Architecture Views and Layers

IMPReSS Software Architecture adopts four views, one for each stakeholder identified in section 5.1.

No particular viewpoints are specified, but since stakeholders are in the center of the views, their

concerns are represented in the architecture. Figure 3 presents the interaction of the four views, the
external components (hardware and software) and the dataflow between stakeholders. Partners,

Developers and Integrators have to deal with Physical and Digital resources. The formers are
hardware components, mainly sensors and actuators, but also different types of equipment and

appliances that may take part in IMPReSS-enabled installations, such as air conditioners and

heaters.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 13 of 24 Submission date: 27 February 2014

Figure 3 starts with the Partner’s View following a right-to-left direction dataflow. IMPReSS Partners

have the responsibility to perform and fulfill the activities comprised by the workpackages and tasks
listed in the DoW. Depending on the task, partners can use digital and physical resources to achieve

the goal of the IMPReSS project. In the end, the System Development Platform (SDP) will be
developed and used by Application Developers, showed in the Developer’s View. Developers also

must interact with physical and digital resources when developing their applications, which in turn
are used by the Solution Integrator. Integrators also configure physical resources and connect

external services (digital resources) to deploy ready-to-use solutions to the Final Recipient.

Recipients access the solution in order to take advantage of its features.

Figure 3 - IMPReSS Architecture Views

The IMPReSS SDP (or platform) that will be used by Developers is composed by two broad software
components, namely the Integrated Development Environment (IDE) and the IMPReSS Middleware.

The IDE runs in foreground and it is directly used by developers for building applications, whereas
the middleware runs in background in it is invoked by the IDE module as well as by external

software and interacts with resources. Therefore one can identify three layers in the IMPReSS

Architecture (Figure 4):

1. Application/Solution: applications and solutions are placed in the same layer because they

are basically the same software, where applications have a broader range of GUI options
since they are used by Integrators.

2. SDP: Composed by IDE and middleware, the SDP uses resources and generates applications
(that in turn generate solutions).

3. Resources: Provide data to the Platform (middleware, more specifically) and receive

commands from it.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 14 of 24 Submission date: 27 February 2014

Figure 4 - IMPReSS Architectural Layers

5.3 IMPReSS Partner’s View

IMPReSS Partner’s View (Figure 5) shows that partners have the most complete view of the

IMPReSS Architecture. The IDE contains a series of GUI modules and the middleware contains
modules with background management responsibilities. IMPReSS assumes that data is stored

somewhere in the cloud, using conventional databases or novel ones (such as big data). Local
storage can also be used as a particular case and for auxiliary purposes. Please notice that different

cloud models may be used, so that public, private, hybrid, and community (NIST 2011) cloud data
storages are possible. Also, IMPReSS does not adopt a “one size fits all” approach for data storage,

making it possible for different database models to be used for different middleware modules.

Modules in the IDE component of the IMPReSS Platform have counterparts in the Middleware
component and they communicate through the Middleware API.

Figure 5 - IMPReSS Partner’s View

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 15 of 24 Submission date: 27 February 2014

Both IDE and Middleware are comprised of five main modules, which are related to each other. In

addition, Middleware has a module to establish communication with the remote storage. The
IMPReSS Platform IDE modules are:

 Composition GUI: A graphical tool for allowing Developers to interconnect the various

modules of the platform in a way that better fits the purpose and the needs of their
particular applications. This module is the GUI part of the Composition Tool, a

commissioning tool presented in the original IMPReSS platform (Error! Reference source
not found.). It is based on Model-driven development (MDD), a software engineering

approach where developers create technology-agnostic models using high levels of

abstraction, aiming at simplifying and formalizing the various activities related to the
software life cycle management (Hailpern 2006). The Composition GUI runs in foreground

and communicates with its twin module Composition Manager in the Middleware, which runs
in background.

 Context GUI: A graphical tool aimed at managing context information, for allowing

Developers to specify which features of context-awareness they need in their applications,

ranging from template specification for smart entities and situations to context modeling and
rule authoring. In other words, the Context GUI exposes to Developers all context-related

features of the IMPReSS Platform that they choose to add into their applications. Based on
the model defined by Developers, this tool communicates with the background context

manager module that implements the templates, rules, sensor and data fusion, context
model, and the context-reasoning engine. Developers must also select and developed

particular configuration options to be disclosed to Integrators and even Recipients.

 Data GUI: A graphical tool aimed at allowing Developers to enter the needed configuration

for the data analysis and support module that uses supervised and unsupervised learning for
helping IMPReSS applications to make more informed decisions, based not only on real time

but also historic data. The Data GUI will configure and interact to the Data Manager module
that runs in the IMPReSS Middleware.

 Resource GUI: A graphical tool aimed at allowing Developers to specify all particular

information needed for the mixed criticality resource management, which may be performed

through parameterization or through a specially designed applications classification
language. This language is used for describing the run-time requirements of an application

in terms of its priority, device access scheme (exclusive or shared) and security. The
Resource GUI outputs this information formally as an application criticality description that

will be understood by the Resource Manager in the IMPReSS Middleware.

 Communication GUI: A graphical tool for allowing Developers to specify all information

needed for dealing with communication in the IMPReSS Middleware. This tool is called

integration support tool in the IMPReSS DoW and it will provide a collection of templates for

different technologies.

The IMPReSS Platform Middleware modules offer background services for their IDE counterparts:

 Composition Manager: This module is an engine that runs in background and supports the

Composition GUI. For example, it may be implemented as an Web Services Engine that
supports the MDD approach disclosed by the Composition GUI to Developers.

 Context Manager: This module encompasses all background software components that a

typical context-aware middleware offers to its users (Perera 2013), such as context

templates, context models, context reasoning engine, and algorithms for sensor and data
fusion. It also interacts with the Storage Manager to data storage and retrieval. Resources

might be accessed directly or preferentially through the Resource and Communication
Managers.

 Data Manager: This module provides all software components needed to implement data

analysis and historic context information that will be used by IMPReSS applications. The
Data Manager also stores and retrieves its raw and processed data using the Storage

Manager. The machine learning algorithms used to process context-aware information for

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 16 of 24 Submission date: 27 February 2014

energy efficiency systems are within the Data Manager. As for the Context Manager,

resources can be accessed directly or through the Resource and Communication Managers.

 Resource Manager: This module contains all software components needed for managing

mixed-criticality resources, such as device and subsystem resource management, resource

management and access scheduler, and security features for resource-constrained
subsystems. It provides functionalities to the IMPReSS middleware that in Figure 1 are

identified as Monitoring and Control.

 Communication Manager: This module implements all communication features of the

IMPReSS Platform, such as resource and service discovery and communication and networks

management. Also, it plays the role of a proxy (an intermediate module) for the other

modules to the Resource Adaptation Interface (RAI). Figure 1 identifies it as the Service
Proxy module and all modules related to the LinkSmart middleware.

 Storage Manager: This module is logically represented as a single and centralized software

component in Figure 5, though its implementation can be as decentralized and distributed as
the other modules need to. It provides an interface to different storage approaches, ranging

from traditional relational databases stored in the cloud to big data and NoSQL databases.

All IDE and Middleware modules, as well as the IMPReSS Middleware API and the Resource
Adaptation Interface, will be further specified and refined during the project and documented in the

final architecture report.

5.4 IMPReSS Developer’s View

Figure 6 depicts the IMPReSS Developer’s View, highlighting the IDE GUI modules (Composition,

Context, Data, Resource and Communication) described in section 5.3. Developers have access to
the graphical interface and they can also add new modules and integrate them to the application

connecting them through the Middleware API. The internal details of the IMPReSS Middleware are
hidden from Developers, since the Middleware API provides everything they need. Developers are

also aware of the existence of external storage sources and physical and digital resources that must

be programmed and tested to work with the Application.

Developers may play the role of Integrators and in the case they have the same view presented in

section 5.5.

Figure 6 - IMPReSS Developer’s View

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 17 of 24 Submission date: 27 February 2014

5.5 IMPReSS Integrator’s View

IMPReSS Integrator’s View is depicted in Figure 7. Integrators are aware of the Application, which is
made available to them by Developers using the IMPReSS IDE. During the development of the

application, Developers provided special interfaces for Integrators to be able to configure, install and

deploy it. Integrators are aware of the Application and Middleware, since they have to install them
and the procedures may be more or less automated for different Applications. Integrators are also

aware of the existence of external storage sources and physical and digital resources because they
need to interconnect them to the Application and to the Middleware through configuration

parameters.

Integrators may play the role of Developers, using the IMPReSS Platform to develop their own

Applications. For that particular case, their view is the normal Developer’s View presented in section

5.4. Alternatively, Integrators may be software developers using different non-IMPReSS-enabled
platforms and they can connect them to the application through the Middleware API. Examples of

non-IMPReSS-enabled platforms are third-party software commonly used by Integrators or they own
in-house developed software. By doing that they are able to enhance an IMPReSS Application with

features that have not being considered by both Partners and Developers.

Integrators access IMPReSS Applications through specially designed interfaces, such as Web or apps
for smartphones and tablets. Their non-IMPReSS-enable applications they access through their own

development tools.

Figure 7 - IMPReSS Integrator’s View

5.6 IMPReSS Recipient’s View

The IMPReSS Recipient’s View is depicted in Figure 8. Recipients have a more limited view of an
IMPReSS Application, which is called Solution after being deployed and eventually enhanced and

customized by Integrators. Recipients are the end-users or final beneficiaries of the technologies
developed by the IMPReSS project. They live, work, or have fun in physical spaces where energy

efficiency is considered of paramount importance and thus are immersed in pervasive environments,
where sensors and actuators are spread all over the place (physical resources).

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 18 of 24 Submission date: 27 February 2014

Figure 8 - IMPReSS Recipient’s View

5.7 IMPReSS Architecture vs. Effort Distribution

Figure 9 depicts the IMPReSS Partner’s View assigning to all modules a Workpackage according to

the effort distribution specified in the DoW.

 Workpackage 2: IMPReSS Middleware API

 Workpackage 3: Communication GUI and Manager; Resource Adaptation Interface

 Workpackage 4: Resource GUI and Manager

 Workpackage 5: Data GUI and Manager

 Workpackage 6: Context GUI and Manager

 Workpackage 7: Composition GUI and Manager

 Workpackage 3, 5, 5, 6, 7: Storage Manager

As emphasized in section 5.3 the Storage Manager is logical centralized but physically distributed, so

that all workpackages will be responsible for it, according to their needs.

Figure 9 - Partner’s View vs. Effort Distribution

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 19 of 24 Submission date: 27 February 2014

Since Workpackages 1 and 9 are focused at non-technical activities - management and

dissemination/exploitation - they are not related to the architecture.

Also, as depicted by Figure 10, Workpackage 8 will develop pilot Applications, thus playing the role

of a Developer in using IMPReSS IDE modules.

Figure 10 - Developer’s View vs. Effort Distribution

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 20 of 24 Submission date: 27 February 2014

6. Requirements vs. Architecture

IMPReSS Deliverable D2.1.1 Initial Requirement Report present the application- and technical-based
requirements that together with the Description of Work (DoW) influenced the IMPReSS

Architecture. As such, the architecture presented in this document fulfills the requirements gathered
from a extensive and collaborative process. Conversely, requirements are also influenced by the

Architecture, as described in section 12, because for each software module of the architecture,

requirements should be listed.

6.1 Functional Requirements to Architecture Mapping

In Table 1 each functional requirement identified in D2.1.1 is mapped to some architecture

component and a short explanation is also presented.

Table 1 - Functional Requirement to Architecture Mapping

Functional Requirement Architecture Comment

IMP-3 Devices should be allocated

to a logical area

Communication

Manager

Communication details are encapsulated

by the Communication Manager

IMP-4 Devices should be allocated
to one or more groups

Communication
Manager

Communication details are encapsulated
by the Communication Manager

IMP-5 The data should be

persisted in NoSQL database

Storage

Manager

The Storage Manager is able to access

NoSQL as well as traditional databases

IMP-6 The data should be

analysed using data mining and

machine learning techniques to find
relevant information and make

predictions.

Data Manager Data analysis is performed inside the Data

Manager

IMP-7 SDP will have a
communication layer that allows

storing data in the IMPReSS Cloud

Storage
Manager

The Storage Manager is able to access
cloud storage as well as other storage

approaches

IMP-8 The application should

provide historical energy

consumption and use of electrical
devices.

Data GUI and

Manager

Developers use the Data GUI to configure

appropriate historical information that is

dealt with by the Data Manager

IMP-12 Access prioritization to

resources

Resource

Manager

Based on application classification (e.g.

critical and non-critical), the Resource
Manager prioritizes resource access

IMP-13 Annotate application with
the level of criticality

Resource GUI Resource GUI allows the classification of
applications, to be interpreted by the

Resource Manager

IMP-16 Reusable components for
trend analysis and forecasting of

energy and occupancy data

Data Manager This is pertaining to the implementation
details of the Data Manager

IMP-17 Dynamically adjustable
security level for resource

constrained devices

Resource
Manager

The Resource Manage should be able to
deploy such level of dynamicity in

enforcing security

IMP-21 Graphical model-driven
commissioning tool

Composition
GUI

The Composition GUI is a MDD based
commissioning tool

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 21 of 24 Submission date: 27 February 2014

Functional Requirement Architecture Comment

IMP-22 Runtime services/devices

discovery and commissioning

Communication

Manager

Services and devices are discovered by

particular sub-modules inside the
Communication Manager

IMP-23 Development toolkit for

resources integration

Resource GUI The Resource GUI should be able to

provide features to resource integration

IMP-24 APIs definition IMPReSS

Middleware API

an RAI

APIs are to be defined for making it

possible to isolate the middleware from

the IDE and from the resources

IMP-25 IMPReSS architecture views Partner’s View

Developer’s

View
Integrator’s

View Recipient’s
View

The IMPReSS Software Architecture is

composed of four views

IMP-26 Templates for smart

entities

Context GUI and

Manager

Templates for smart entities are specified

by the Context GUI and processed by the
Context Manager

6.2 Non-Functional Requirements to Architecture Mapping

Table 2 presents non-functional requirements taken from Deliverable D2.1.1 and map them to some
architecture component.

Table 2 - Non-Functional Requirement to Architecture Mapping

Functional Requirement Architecture Comment

IMP-1 Sensors must be

unobtrusive

- This requirement is not directly related to

the architecture

IMP-9 The SDP should
encapsulate the complexity of

different technologies, developing a
single logic to devices manipulation.

Communication
Manager

The Communication Manager encapsulate
details of a variety of different

technologies used by the physical
resources

IMP-10 The SDP shall support

multiple communication protocols

Communication

Manager

Different resources may require different

protocols so the Communication Manager
must provide seamless and transparent

communication to them

IMP-11 The software components
of the middleware should be

modularized

Partner’s View The main software components are
defined in the Partner’s View and will be

further refined

IMP-14 The impress core runs on a
Gateway that cost below USD50

- This requirement is a warning for the
development of the IMPReSS platform,

that should be kept as light-weighted as
possible to be able to run on resource

constrained devices

IMP-18 The IMPReSS platform
should support development of IoT

systems that are extendable for
future needs

Partner’s View IMPReSS Software Architecture is aimed
at being extended for different needs,

both IDE and Middleware.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 22 of 24 Submission date: 27 February 2014

Functional Requirement Architecture Comment

IMP-19 The IMPReSS platform

should be agnostic to the
application domain

Developer’s

View

IMPReSS Software Architecture is in

principle orthogonal to application
domains and Developers can develop

different Applications for different

purposes using the IMPReSS Platform.
The IMPReSS project will focus on two

pilot applications for saving energy, in
Teatro Amazonas and the UFABC campus.

IMP-20 The IMPReSS SDP should

be easy to use

IMPReSS IDE The GUI Modules inside the IDE should be

seamlessly integrated and should provide
adequate quality of experience levels for

Developers

IMP-27 Data in the IMPReSS
network is classified to different

categories based on the criticality

Resource
Manager

Communication
Manager

Resource Manager and Communication
Manager should be integrated in such a

way to allow data flowing from
applications classified to different

criticality levels to be treated likewise

IMP-28 Confidentiality of the
messages between IMPReSS

platform devices can be guaranteed

Communication
Manager

Communication Security is encapsulated
by the Communication Manager

IMP-29 Integrity of the messages
between IMPReSS devices can be

guaranteed

Communication
Manager

Communication Security is encapsulated
by the Communication Manager

IMP-30 Availability of the critical

IMPReSS devices must be

guaranteed

Resource

Manager

Communication
Manager

Monitoring should be performed for the

software to be able to make decisions

related to fault tolerance. Hardware
availability can be only guaranteed by

physical redundancy

IMP-31 Data transmitted in the
IMPReSS network is classified to

different classes based on the
confidentiality.

Resource
Manager

Communication
Manager

Resource Manager and Communication
Manager should be integrated in such a

way to allow data flowing from
applications classified to different

criticality levels to be treated likewise

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 23 of 24 Submission date: 27 February 2014

7. Conclusion

This reports described the initial thoughts and views that lead to the design of the first version of
the IMPReSS Software Architecture. This initial architecture, serving as a comprehensive and unique

view of the big picture, plays a key role in maintaining partners aware of the IMPReSS platform so
that they can always have that in mind when designing and implementing particular modules.

Integration is a key concern when adopting a highly distributed software development process.

During the upcoming activities, partners will design their own modules’ architecture by refining this
initial architecture. Also, APIs will be defined in order to keep a controlled and ordered

communication between software modules. This process will provide useful insights and feedback
for making it possible to come up with a more complete and up-to-date architecture that will be

documented in the future.

The design of this initial version of the IMPReSS Software Architecture involved an extensive

learning process about the existing knowledge held by the partners and expressed in the original

IMPReSS platform, which was presented in the project proposal. Also, it required certain out of the
box thinking, in order for making it possible to understand the functionality and role of each module

and to simplify the architectural design, at least in the starting phase of the project. The role of
stakeholders has been defined and they influenced the architecture views defined in this document.

Last, but not least, requirements should not be forgotten during the development process and to

this end they have been mapped to architecture components.

IMPReSS D2.2.1 SDP Initial Architecture Report

Document version: 1.0 Page 24 of 24 Submission date: 27 February 2014

8. References

(Bass 2012) Bass, Len; Paul Clements, Rick Kazman (2012). Software Architecture In Practice, Third
Edition. Boston: Addison-Wesley. pp. 21–24.

(Bassi 2013) Alessandro Bassi ;Martin Bauer; Martin Fiedler ; Thorsten Kramp ; Rob van Kranenburg
;Sebastian Lange ; Stefan Meissner (Springer 2013). Enabling Things to Talk: Designing

IoT solutions with the IoT Architectural Reference Model

(Clements 2010) Clements, Paul; Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, Judith Stafford (2010). Documenting Software Architectures: Views

and Beyond, Second Edition. Boston: Addison-Wesley.

(Hailpern 2006) Hailpern, B., Tarr, P. (2006), “Model-driven development: The good, the bad, and the

ugly”, IBM Systems Journal, 45(3), pp. 451-461.

(IEEE 2000) IEEE, “Recommended Practice for Architectural Description of Software-intensive Systems”,

IEEE Std 1471:2000.

(IMPRESS 2014) IMPReSS, “Initial Requirement Report”, IMPReSS Deliverable D2.1.1, January 2014.

(ISO 2011) ISO, “Systems and software engineering — Architecture description”, ISO/IEC/IEEE

42010:2011.

(Kruchten 1995) Kruchten, P., “The 4+1 View Model of Architecture”, IEEE Software, vol. 12, no. 6, pp. 42-

50, November 1995.

(Kruchten 2003) Kruchten, P., “The Rational Unified Process: An Introduction”, Addison-Wesley, 3rd ed.,
2003.

(NIST 2011) Mell, P., Grance, T., “The NIST Definition of Cloud Computing”, NIST Special Publication
800-145, 2011.

(Perera 2013) Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., “Context Aware Computing for
The Internet of Things: A Survey”, Accepted for IEEE Communications Surveys and

Tutorials, 2013.

