
IoTLink: An Internet of Things Prototyping Toolkit

Ferry Pramudianto1, Carlos Alberto Kamienski2, Eduardo Souto3, Fabrizio Borelli4, Lucas L. Gomes5,
Djamel Sadok6, Matthias Jarke7

1Fraunhofer FIT, Schloss Birlinghoven, St. Augustin, Germany
2,4Federal University of ABC (UFABC), Santo André, Brazil
3Federal University of Amazonas (UFAM), Manaus, Brazil
5,6Federal University of Pernambuco (UFPE), Recife, Brazil

7RWTH-Aachen, Ahornstr. 55, 52056 Aachen Germany
e-mail: 1ferry.ferry@fit,fraunhofer.de, 2cak@ufabc.edu.br, 3esouto@icomp.ufam.edu.br,

4fabrizio.borelli@ufabc.edu.br, 5lucas.gomes@gprt.ufpe.br, 6jamel@gprt.ufpe.br, 7jarke@informatik.rwth-aachen.de

Abstract— The Internet of Things (IoT) application
development is a complex task that requires a wide range
of expertise. Currently, the IoT community lacks a
development toolkit that enables inexperienced developers
to develop IoT prototypes rapidly. Filling this gap, we
propose a development toolkit based on a model-driven
approach, called IoTLink. IoTLink allows inexperienced
developers to compose mashup applications through a
graphical domain-specific language that can be easily
configured and wired together to create an IoT applica-
tion. Through visual components, IoTLink encapsulates
the complexity of communicating with devices and services
on the internet and abstracts them as virtual objects that
are accessible through different communication techno-
logies. Consequently, it solves interoperability between
heterogeneous IoT components. Based on the visual model,
IoTLink is able to generate a complete Java project
including an extendable Java code. In a controlled
experiment, IoTLink was 42% faster than using a Java
library and able to outperformed the Java library’s user
satisfactions.

Keywords—model driven development, mashup, Internet
of Things, code generation, development tool

I. INTRODUCTION
While the number connected things increases rapidly,

the process of developing IoT system prototypes is still a
complex task. It requires expertise in various fields, as
developers have to deal with various technological
challenges such as noise of various sensor components,
network protocols and data format interoperability,
storing and analyzing a huge amount of data.
Additionally, the existing development platform used in
IoT development are designed to support specific group
of developers such as embedded development or
enterprise application development. Consequently, to
create a simple IoT prototype, developers are required to
combine different disintegrated tools and programming
platform. For instance, embedded C and model-driven
development are often used for embedded system
development [1, 2] since they could work very efficiently
on devices that have very limited computing resources.
Meanwhile integrating IoT to enterprise applications

which often can be run on a powerful server or PCs often
is done through middleware with newer programming
languages such as Java and C# since they offer features
that simplify developers’ tasks, easier to maintain, and
more forgiving since they utilize garbage collectors. In
addition, developers are required to understand
heterogeneous communication paradigms and protocols
that are used by embedded devices, as well as enterprise
applications.

This paper proposes a development toolkit, called
IoTLink, based on model-driven development (MDD)
approach that suggest system development should be
done by defining the computation independent model
(CIM) which is refined to Platform-Independent Model
(PIM), and detailed in a platform-specific model (PSM)
[3]. By utilizing a high-level model, IoTLink allows
inexperienced developers to compose distributed devices
and services into mashup [4] and visually define how the
components are combined to represent “Things”. The
model can be transformed into a Java code, which can be
extended by more experienced developers in a further
phase of the development. The generated codes may also
be run as a standalone application that exposes the
domain objects through different protocols and
serialization formats, which can be chosen during the
modeling phase.

The remainder of the paper is organized as follows.
Section 2 elaborates the related works including Internet
of things definition and mashup development. Section 3
describes the implementation of IoTLink. Section 4
describes the evaluation using a case study and formal
study, in section 5 we conclude our work and describe
our plans for IoTLink in the future.

II. RELATED WORKS

A. Internet of things definition and context
The Internet of Things (IoT) is a concept in which

devices and physical objects are connected and able to
cooperate to achieve some goals. Initially, the term
‘Internet of Things’ was coined by Kevin Ashton when
he worked on P&G's supply chain [1]. Since then IoT
definitions have been conveyed from different

perspectives, inspired by diverse visions [2]. First, the
“Things” vision focuses on enabling interaction between
physical objects and users. Second, the network-oriented
vision deals with various communication methods
among devices, systems and their users. Third, the
semantic oriented vision focuses on retrieving useful
information from massive and inconsistent data
generated by sensors and another kind of data providers
to support the users.

The Internet of Things European Research Cluster
(IERC) defines IoT as "A dynamic global network
infrastructure with self-configuring capabilities based on
standard and interoperable communication protocols
where physical and virtual “things” have identities,
physical attributes, and virtual personalities and use
intelligent interfaces, and are seamlessly integrated into
the information network" [3]. This definition highlights
that IoT is not only concerned with the communication
between physical and virtual world but also demands that
the physical objects become smarter to accomplish
autonomous systems that require very little to zero
maintenance.

In terms of application development, high-level
architectures and IoT middleware have been proposed
which has been summarized extensively here [4, 5].
Among these approaches, Service Oriented Architecture
(SOA) has become popular to ensure horizontal and
vertical integrations among applications and devices.

Recently, cloud-based providers known as the Web
of Things (WoT) such as Xively (www.xively.com),
OpenSense (open.sen.se), and ThingWorx (www.
thingworx.com) become quite popular as a platform to
collect, aggregate, and visualize a large amount of sensor
data. They provide an API store sensor data in the cloud,
perform data analytics and visualize relevant information
(e.g., geographical data). Some providers offer a mashup
development tool for process and visualize sensor
streams rapidly. However, only a few of them provide a
support for integrating heterogeneous devices into the
platform e.g. Xively provides libraries in several
languages to consume their API from devices directly.

B. Mashup Development
Mashup development is a way of building web

applications rapidly by aggregating different data sources
on the web using a graphical development interface [6].
Yahoo! Pipes (Figure 1), and DERI Pipes [7] are
examples of mashup development platforms that allow
end-user developers to compose services by linking
components with a high level of abstraction. Thus,
mashup development is less flexible than conventional
programming language since it reveals less technical
details to ensure the simplicity of the development [6].
Because of this reason, mashup development generally
targets end-users with minimal development experiences
instead of expert developers. Usually, mashup
development is supported by a visual tool such as shown
in Figure 10.

Figure 1. An example of a mashup service for querying a

web service, developed on Yahoo! Pipes.

Figure 1 presents an example of a mashup
development environment of the Yahoo! Pipes. It
follows a Flow-Based Programming (FBP) [8] approach
for composing the interaction between predefined
modules. The outputs of one module can be connected to
the input of other modules as long as their types are
compatible. Otherwise, data transformation components
must be introduced. A study evaluated the acceptance of
Yahoo! Pipes’ among eight students revealed a good
acceptance and a fast learning curve [7]. Moreover,
mashup development has been investigated to involve
business users, who do not have extensive programming
experience, to create and share customized business
applications. This approach is proposed to reduce the
bottleneck on the IT department, which has to implement
different business requirements within a limited period
[8, 9]. Allowing non-experts to participate in creating
business applications may help overcoming the time to
market demands, which has been increasingly becoming
shorter.

An open source project from IBM called Node-RED
(nodered.org) adopts a similar approach to develop IoT
mashup that can be deployed on a PC as well as smaller
platforms such as Raspberry PI (www.raspberrypi.org).
Their approach relies purely on data flow abstractions
unlike our approach that keeps the abstraction
resembling physical objects, which is more natural to
interact with from the application development
perspective.

III. IOTLINK CONCEPT & IMPLEMENTATION
There has been some efforts to define IoT metamodel

which suggest how physical objects could be represented
by software services e.g., Ebbits (www.ebbits.eu) an
European research project aims at developing IoT
platform for business applications, IoT-A, a European
research project aim at standardizing IoT architecture.
IoT-A has investigated the different IoT architectures
and concludes them as an IoT Architecture Reference
Model (ARM) [9]. Figure 2 illustrates a simplified IoT-A
metamodel. It shows that a physical object must be
uniquely identifiable, has physical qualities that partly
can be observed by sensors, and has some capabilities or
services that could affect the environment. Physical

objects can be represented by virtual objects, which act
as their proxy allowing applications to retrieve their
states and consume their services.

	

Figure 2. IoT Metamodel based on the IoT-A project [10]

Based on this conception, we designed IoTLink that
allows developers to compose software representation of
physical objects through a model-driven approach. We
identify that IoTLink’s platform-independent metamodel
comprises four abstraction layers. The first layer
abstracts the heterogeneous connections to physical
sensors. This includes providing specific communication
technologies and providing uniform interface for the
component in other layers

The second layer is responsible for processing sensor
data to determine the actual status of the physical objects.
This layer is required since sensor hardware has physical
limitations and may contain measurement noise. Thus,
sometimes several types of sensor must be combined for
sensing physical events. For instance, to measure the
stress level, several bio-readings such as respiration rate,
heart rates, skin conductance may be collected and
through intelligent algorithms, the system could conclude
the stress level [11]. Thus, this layer must provide sensor
fusion modules, which can be used to pre-process and
fuse sensor readings before these values can represent
the actual state of a physical object.

 The third layer is responsible for abstracting the
domain objects that represent the “Things” and their
attributes. We follow the object-oriented paradigm since
most developers are already familiar with the concept. It
requires the domain objects to be abstracted through
classes.

The fourth layer is responsible for exposing the
domain objects to the application logic, distributed
applications, as well as persistence storage. Thus, it must
provide a network interface and a specific data format
that can be accessed and processed by distributed
applications.

IoTLink allows developers to define the applications
in a platform-independent model through visual
notations, which then can be transformed into a platform-
specific model. We decided to use Java to implement the
platform-specific model since Java offers extensive open
source components for software developments that ease
the required efforts to implement IoTLink. Moreover,

Java allows us to implement artifacts that can be directly
compiled and used as proxies for the “Things”.

Due to these considerations we define IoTLink’s
metamodel as a groundwork for the development of
IoTLink (has been evaluated in [12]). The metamodel
comprises the aforementioned abstraction layers and
specific implementations of each layer. As depicted in
Figure 3, several concrete connections are implemented
and derived from the connections class. The link between
connections and properties could go through concrete
sensor fusion components. The virtual objects can be
serialized through output components. The output
components also allow external applications to interact
with the virtual objects i.e. by consuming their services.

App

Class

Connection

Property

Function

Virtual
Object

Fusion

Output

Arduino
Serial

MQTTSub SOAPConn RESTConn

Voting
Fuse

MinMax Average Esper
Engine

Relational
Database

SOAP
Output

Rule
Engine

	

Figure 3. Logical view of the EMF meta-model

Based on this metamodel, we choose to provide our
users a visual editor for defining concrete application
models since the visual notations could enable
inexperienced developers as our investigation section
two shows. Using the visual editor, the users may choose
each concrete components in the four layers for their
applications and link them together. Then the model can
be transformed into a Java implementation that can be
extended by developers that are more experienced.

A. Implementation
IoTLink was developed by following a human-

centered approach. First, a low-fidelity wireframe was
developed using Balsamiq (www.balsamiq.com) and
validated by 8 users using a cognitive walkthrough [13]
approach to evaluate the metamodel as well as identify
the usability problems of the whole approach. Based on
this initial feedback, we improved the metamodel and the
user interface design (e.g., sensor fusion is not
necessarily required. Thus, the virtual object should be
able to be linked with connections). After the metamodel
and wireframe design was quite mature, a high fidelity

prototype of IoTLink was built, evaluated, and the result
has been published in [12].

	

Figure 4. High-level architecture of the IoTLink

We chose to implement the IoTLink as an eclipse
plugin since Eclipse already offers many features
required to support the productivity of the system
development that are required for extending the
generated code. The components used to develop
IoTLink are shown in Figure 4. The IoTLink’s
development extensively explored the Eclipse Modeling
Project (www.eclipse.org/modeling/) which already
provide frameworks for developing a customized
modeling language, a model transformation, and a code
generator. After a careful investigation, the following
plugins were selected for developing IoTLink
• Eclipse Modeling Framework (EMF) to define the

metamodel of the modeling language
• Eclipse Graphical Modeling Framework (GMF) to

create a graphical editor
• Extended Editing Framework (EEF) to create a

property editor for the EMF elements
• Acceleo to create a model transformation from the

EMF objects into Java code.
The metamodel shown in Figure 3 is implemented

using a simplified UML called EMFCore (ECore) which
is a standard model required by EMF. Then, as depicted
in Figure 4 the ECore model is derived by the GMF to
define the Graphical definition model, called “gmf-
graph”. It determines the visual elements to be displayed
on the main canvas, the relationships, and constraints
between diagrams, as well as other behaviors. Further,
GMF creates a Tooling definition model, called
“gmftool”, which defines the notations to be displayed
on the palette menu. The gmfgraph and gmftools are then
mapped in a mapping configuration, called “gmfmap”
which is used by GMF to decide on what notation should
be shown on the main canvas when an item from the
palette menu is dragged and dropped to the main canvas.
To create a more visually attractive property sheet for
each diagram, we use the EEF plugin. EEF derives the
Metamodel to generate an EEF model. An EEF model
defines the widgets used in the property sheet of each
notation. As shown in Figure 5, IoTLink’s user interface
maps the proposed metamodel.

B. The connection components
Currently, we have implemented several components

that are necessary to enable IoT prototyping as well as to
support interoperability with services within the
enterprise environment. They include:
• ArduinoSerial enables communication with Arduino

(www.arduino.cc) boards. Arduino has been widely
used for rapid hardware prototyping.

• SOAPInput enables connection to a SOAP-based
web service, which are widely used among various
enterprise applications and recently has been
proposed for devices (DPWS). The SOAPInput uses
an XPath (www.w3.org/TR/xpath/) expression to
parse the incoming soap objects.

• RESTInput provides a simple and lightweight

Figure 5. Latest iteration of the IoTLink

alternative to SOAP-based web service. RESTInput
allows the users to poll a resource on a specific
URL. It also uses XPath and JSONPath to parse the
incoming XML and JSON respectively.

• OPCClient enables the communication to industrial
devices through an OPC middleware, which is
widely used in the industrial environment. The
OPCClient component can be configured to poll an
OPC variable by providing the tag of the variable.

• MQTTInput, this connection receives data from an
MQTT broker[14]. MQTT is an emerging
communication standard for IoT that adopts publish-
subscribe paradigm. MQTT features a small
footprint and three level of QoS, which makes it
ideal to run on devices with limited resources and
unreliable network with low bandwidths.

C. Defining Complex Event Processing

	

Figure 6. A network of sensor fusion modules

For processing and combining sensor data, IoTLink
includes a complex event processing (CEP) engine called
Esper (esper.codehaus.org). We choose Esper since it is
able to process data stream efficiently. Esper allows the
users to find event patterns or aggregate events using a
query language called Event Processing Language
(EPL). ESPER also allows aggregation and grouping
using “group by” and “having” clause, which is useful to
perform calculations of values based on particular group.

To enable parallel processing of event streams,
IoTLink allows sensor fusion modules to be combined as
a network of processes that are run in separate threads as
depicted in Figure 6. This allows data to be processed
through a network of modular algorithms until the
desired information is obtained.

D. Defining Virtual Object Component
In the virtual object container, developers are able to

define the representation of the physical objects
belonging to two different types. First, StaticObject
represents stationary relation between physical objects
and the sensors and actuators that observe them e.g. a
room that has a temperature sensor attached on the wall
of the room can be represented by a static object.
Secondly, objects that only have temporary relations to
the sensors e.g. occupants who move from one room to
another can be observed by the sensors located nearby.

Similar to object-oriented programming, each virtual
object must have a class that defines its structure. The

structure of a class includes properties and functions.
Properties may have a type of primitive data types such
as int, float, double, string, boolean, byte or a type of
another class. The latter ones are called Complex
Properties. These classes are defined in the
TemplateContainer, which opens a separate diagram
when the users double click on it. When the classes are
defined, on the main canvas, the users could add concrete
objects and assign a class to them. When a class is
assigned, the structure of the class is applied to the
object. This is useful for maintaining structural changes
to a lot of objects.

When a sensor is used to observe a specific property
of a physical object, the developer can model this using
IoTLink by linking the relevant input component to the
property of the virtual object. This mapping is used by
the code generator to route the values of the
corresponding sensor to the object being observed. When
several sensors are required to determine a specific
property of a physical object, it can be modelled by
linking the respective input components to a sensor
fusion component, which then linked to a virtual object.
The objects may also contain functions that can be
mapped to actuators, which are used by the generated
code to forward the function calls to the relevant
actuators.

E. Output Components
The output components define how the virtual

objects should be exposed to the external applications.
We have implemented several components including
storing the states of the objects to a relational database,
exposing the objects as SOAP, or resources through
REST, publishing the objects to MQTT broker, and
sending the objects to a Drools rule engine. As these
components work differently, each output results in
different behavior, for instance, the SOAP-based Web
service provides a method to get different objects based
on their classes. E.g., if there is a static object with a
name of “object1” and has a type of “Class1”, the output
component will generate a Web Service method named
getClass1(String Id). To retrieve object1, users could
invoke getClass1(“object1”). The REST component
represents the virtual objects as web resources that can
be retrieved through specific URLs. For instance, given
an object with an id of “object1” and class of “Class1”
and the application is run on the local host, the REST
component generates the following URLs:

http://localhost/virtualobject/ class1/object1.

 Moreover, the REST component generates

parameterized URLs to invoke the functions of the
virtual objects e.g.:

http://localhost/virtualobject/class1/object1?setOn =true.

The database component uses EclipseLink

(www.eclipse.org/eclipselink/), the implementation of
Java Persistence API (JPA) to interact with a database

engine. The generated classes are annotated and
automatically mapped to tables by EclipseLink. When
the state of the object has changed, the snapshot is stored
in the history table. The MQTTOutput component
provides an event publisher to publish the state of the
virtual objects through an MQTTevent broker [15]. The
publisher could be configured to publish events with the
two topic formats. First, a flat structure topic, which only
includes the class of the object, the object id, and the
property as follows:

baseTopic/virtualobject/[ObjectClass]/[Obj.Id]/[PropName]

The topic structure allows developers to subscribe all

events based on the class of the virtual objects using
wildcard topic. The second format follows a hierarchical
structure containing the objects id as shown by the
following example:

baseTopic/virtualobject/[Obj.Id1]/[Obj.Id2]/../[PropName],

where the subsequent object is a child
object of the prior object.

The second topic pattern allows the application to

subscribe to all events belong to an object and its
children. IoTLink is also able to generate a connection to
a Drools[16] rule engine. This enables developers to
define rules to act based on the state of the virtual
objects. The Drools component can be configured to poll
the rules from a central repository called Guvnor[16]
Database. This allows developers to deploy and change
rules at runtime, which saves the re-deployment time.

F. Generated Application
IoTLink generates Java artifacts based on the

platform-independent model. For each data source,
sensor fusion and output component a Java class is
generated. These classes are used by the controller class
named MainApp, which initializes the concrete objects.
The MainApp holds the link between domain objects,
data sources, sensor fusion modules, and output. When
data source objects receive data from physical objects,
they are pushed to the sensor fusion modules, to which
they are connected. The data could go through several
levels of fusion depending on how the sensor fusion
components are modeled. Once the sensor data is
processed, it is pushed to the MainApp. If the sensor data
does not need to be processed through sensor fusion
modules, the data is pushed directly to the MainApp.
Since the MainApp maintains the link between modules,
it is able to assign these data to the corresponding virtual
objects.

When the virtual objects are updated, the output
components are notified so that they can push the data if
necessary e.g. the Database could persist the changes,
MQTT broker could notify the subscribers, and the
Drools could update the objects in its knowledge base.
This is however not required by the output components
that must be pulled e.g. SOAP- and RESTOutput.

IV. EVALUATION
IoTLink was evaluated through two methods. First,

to measure the usefulness of IoTLink in a real-world
development, a case study is used. However, the result of
the case study is hard to be generalized [17]. Therefore, a
formal study measuring the usability of IoTLink was also
conducted.

A. Case study

	

Figure 7. Manufacturing test bed set up at COMAU's site

In the case study, a model-driven approach and
IoTLink was applied for integrating the data from
manufacturing stations into a monitoring application that
runs on an iPad. The main challenge in this case study is
integrating different technologies including industrial
automation devices that can be accessed through OPC
protocol [18], wireless sensor network using 6LowPAN,
and iPad which supports a Wi-Fi network.

The showcase was part of an EU-Brazil research
project to demonstrate energy efficient manufacturing.
Thus, the iPad App was essential to monitor the amount
of energy that the station requires welding a rooftop of a
sedan. As Figure 7 illustrates, the station contains a robot
with a welding gun, a conveyor system. Each device is
equipped with a power sensor that are accessible through
an OPC server. In addition to the real sensors, event
generators are used for simulating four further stations
and four robots per stations. To monitor the energy
consumptions in each station and robot, the application
must retrieve data from each sensor, and sum all the
energy values per robot and then per station. The
aggregated values must be stored in a database and
shown on an iPad App to the line manager.

For creating the prototype of the aforementioned
application, the class diagram was created using IoTLink
as depicted in Figure 8A. We modelled classes for
Manufacturing Line, Station, Robot, and Device, which
have a “Power” property for containing the energy
consumptions of the devices attached to them. After the
classes are modeled, the virtual objects must be
instantiated in the main canvas and linked with necessary
the input, output, and sensor fusion components.
Fortunately, IoTLink is able to generate the concrete
objects based on the cardinality defined in the class

diagram. In the input compartment, OPC Inputs for
subscribing retrieving the sensor data were used. In the
sensor fusion compartment, several fusion components
are created first to aggregate the axles power
consumption into the robot power consumption, secondly
to aggregate the robots’ consumptions into the overall
station’s consumptions, and finally from stations’
consumption into the overall line’s consumptions. The
model uses Esper’s complex event processing engine,
which can be configured with a domain specific
language (EPL) to accumulate the consumption events
within a time interval.

	

	

Figure 8. Classes used to represent the entities in the
domain (A) and the concrete implementation model where

concrete instances are linked to data sources (B)

In addition, another Virtual Object in each station is
required to represent the car roof being processed. Each
of this car roof has a “TotalEnergy” property, which is
linked to all energy sensors in the station when it enters
the station (Figure 8B). This allows the roof to
accumulate the energy data from one station to another
station providing an overview how much energy is
required to produce the roof of a car. In the output area,
three output components including the DatabaseOutput,
RestOutput and MQTTEventOutput are instantiated. The
DatabaseOutput generates the necessary Java Persistence
API (JPA) annotations, which are used by the
EclipseLink (www.eclipse.org/eclipselink/) to generate
the database schema and map the objects into the entries
in the database tables.

Applying IoTLink to the case study was able to solve
the following challenges to the development:
• It solves the interoperability issues between different

components since it supports different
communication technologies for communicating

with physical devices as well as for exposing the
virtual objects.

• It keeps the code consistent based on a more abstract
model, which is easier to maintain.

• It was able to accelerate the development time by
generating the required source code to perform
monitoring and reduce mistakes that were usually
caused by copy-pasting chunk of codes.

• It was able to facilitate communication between
stakeholders with different background, i.e., the
abstract model was able to be understood by the
electrical engineers and the project manager easily.

B. Empirical study
The empirical study is designed to identify IoTLink’s

efficiency and effectiveness as well as the users’
satisfaction when using it in the IoT software
development. These are three factors that resemble a
usability metric as described by ISO 9241-11[19]. We
compared the time required for developing a program
that monitor the temperature and light intensities in two
rooms using IoTLink and Java libraries. The study was
done using within-group design, which requires the
participants to perform the same tasks twice, using
IoTLink and Java libraries. The Java library was
designed to have a similar abstraction level to the
IoTLink components. The order of the tool was
alternated for every different participant to cancel out the
learning and fatigue effects. The monitoring program
was decomposed into five smaller tasks. They include (1)
defining domain model including the class and objects.
(2) Subscribing to four MQTT events and update the
domain objects based on the values. (3) Perform an
average of the light intensity values before they are
assigned to a property of the rooms. (4) Publish the
objects through REST-based service. (5) Publish the
objects as MQTT events when the objects are updated.
After the five tasks were done with IoTLink or Java
libraries, the participants are asked to fill a Post-Study
System Usability Questionnaire (PSSUQ) [20]. It
comprise four 19 questions to evaluate four aspects of
the tool including the overall satisfaction score
(OVERALL), the system usefulness (SYSUSE), the
information quality (INFOQUAL), and the interface
quality (INTERQUAL). The efficiency was measured by
the time required by the participants to perform a task,
and the effectiveness was measured by the errors done by
the participants. The evaluation was performed on a Dell
latitude E6230 with core i7, 16GB Memory, 256 SSD.
The 12 male participants were randomly chosen and
have object oriented experiences between 2-17 years
with median of 7.5, UML experiences between 1-12 with
a median of 5 years, and IoT experience between 0-6
with a median of 1.5 years.

Performing an analysis on the time required to
complete the tasks of using paired T-Test shows that the
total time to solve the tasks using IoTLink (M=29;
SD=15) was 42% faster than Java (M=49; SD=20)
(T(11)=3.3, p<.05). Using IoTLink (M=7.8; SD=3.5) to

A

B

link MQTT events to virtual object (task2) was 52%
faster than using Java library (M=16.8; SD=11.7)
[T(11)=2.4, p<.05.]. IoTLink (M=4.6; SD=4.5) was
59.5% faster to perform task 4 compared to the Java
Library (M=10.5; SD=9) [T(11)=3.4, p<.05].

Figure 9. Time to complete each task.

IoTLink was 34.4% and 51.3% faster than Java
library for performing tasks 3 and 4 respectively.
However, paired T-Test analyses show no significant
differences. IoTLink was 2.7% slower than Java for
defining classes and objects, but a T-Test analysis shows
no significant differences.

We could see a pattern from these tasks where
IoTLink is faster for linking components than using the
Java library. For instance, task 2 requires the users to
select the components and drop them in the input
container. Then they had to link the input components to
the domain objects, which only requires the user to draw
lines from the input components to the property of each
object. In opposite, using Java, the users must instantiate
the objects of the connection component, create a
listener, link the listener to each input object, then they
must set the properties of the domain objects based on
the data received by the listeners.

Using IoTLink to perform task 4 was also
significantly faster since the users were only required to
select the components drag them to the corresponding
containers, and draw lines from the output components to
the domain model container. In opposite, using Java to
expose the objects through REST requires the users to
annotate the Java Beans and create a service class
providing methods to be called when the REST service is
accessed. The process required by IoTLink can be
simplified much further since it is able to generate the
necessary service classes required by the REST library.
In task 4, the IoTLink was also able to generate the
necessary code for publishing events to an MQTT broker
much further than what a library could provide.
Therefore, although Java library and the IoTLink
component may provide the same abstractions, code
generation bring further advantages that could simplify
the development.

In task 3 and 5, although the average time of IoTLink
shows an improvement over Java, however it does not
show significant differences. This was caused by the

more experienced developers were able to reuse their
java code from the previous tasks. They copied some
code and modified them. Although some users were able
to finish these tasks nearly as fast as using IoTLink, they
also made more mistakes when using copy and paste
since they were not able to change the code consistently.

There was no significant time different between
IoTLink and Java for solving task 1. Since IoTLink did
not optimize how objects and classes should be defined.
It seems that some participants had difficulties on
clicking the field to define the names, therefore the time
required by IoTLink was slightly higher than using Java
where some users used the eclipse wizard to generate the
class, and some more experienced users were able to
write code quicker than interacting with visual user
interface.

Figure 10. Participants' satisfaction to IoTLink compared

to Java in a rapid prototyping.

The results of the post-study questionnaires for both
IoTLink and Java are categorized according to the type
of the questions as explained by Lewis et al. [21]. The
analysis using paired T-Test while assuming unequal
variances shows that there are significant differences
between IoTLink and Java on the system quality,
information quality, interface quality, and overall quality
from the participants’ perceptions. As illustrated in Figure
10, the users’ perception on the quality of the IoTLink is
superior in all categories. However, many participants
pointed out that the documentation should be improved
since some of they were not too familiar with IoT terms.
The documentation could also be improved by providing
a quick-start and an example of creating a prototype from
scratch until finish. Two participants complained because
the documentation did not explain in detail the logic of
the components, which made them difficult to
understand what happened behind the scenes.

V. CONCLUSION
Applying IoTLink to build a prototype of a

European-Brazil research project has given us an insight
that the tool is definitely able to support a rapid
prototyping development. When different components
must be tested, developers could rapidly compose the
components visually and generate a Java code based on
the model. This feature is able to save a lot of time

compared to using conventional programming language
where developers are required to learn the documentation
extensively.

A controlled experiment comparing IoTLink with
Java development revealed that for almost every task
IoTLink requires a less time than the conventional Java
library since it was able to encapsulate the technical
details and automate some implementation tasks. In
addition, visual cues seem to add more confidence to the
developers when dealing with unfamiliar components.
IoTLink only presents the necessary options for the
developers, which makes it faster for the developers to
decide the necessary actions required to complete the
tasks. In contrast, Java programming provides extensive
possibilities, which could overwhelm the inexperienced
developers. The participants also claimed that a visual
representation of the data flow could provide them with a
better overview of their solution. However, we have not
investigated how far this would affect the developers’
comprehension of the solution. Therefore, a formal study
should be done to measure this. Another advantage of
using MDD approach is that it is able to automate some
programming task and generate the necessary code,
which must be typed manually when using Java
programming.

In the case study, we learned that IoTLink could be
improved by utilizing some kind of iterations for
handling a large number of identical objects. Moreover,
the diagram should be partitioned to increase the
understandability as well as the performance.

As future work, we plan to evaluate the tool with a
different group of users such as experienced versus
inexperienced developers in IoT. In addition, we will
evaluate other IoTLink features such as the connection to
the Drools rule engine. We also intend to add features
that allow developers to simulate their solutions in order
to check the completeness and correctness of the model
before they generate the Java code.

VI. ACKNOWLEDGMENT
This work was co-funded by the European Commission
and the CNPq through joint research project IMPReSS
(FP7-ICT-2013-EU-Brazil, GA No. 614100) and
EBBITS (FP7-ICT-2009.1.3, GA No. 257852).

VII. REFERENCES
[1] http://www.rfidjournal.com/article/print/4986, accessed June 20,

2014
[2] Atzori, L., Iera, A., and Morabito, G.: ‘The internet of things: A

survey’, Computer Networks, 2010, 54, (15), pp. 2787-2805
[3] Vermesan, O., and Friess, P.: ‘Internet of things: converging

technologies for smart environments and integrated ecosystems’
(River Publishers, 2013. 2013)

[4] Bandyopadhyay, S., Sengupta, M., Maiti, S., and Dutta, S.: ‘A
survey of middleware for internet of things’: ‘Recent Trends in
Wireless and Mobile Networks’ (Springer, 2011), pp. 288-296

[5] Bandyopadhyay, S., Sengupta, M., Maiti, S., and Dutta, S.: ‘Role
of middleware for internet of things: A study’, International

Journal of Computer Science and Engineering Survey, 2011, 2,
(3), pp. 94-105

[6] Grammel, L., and Storey, M.-A.: ‘An end user perspective on
mashup makers’, University of Victoria Technical Report DCS-
324-IR, 2008

[7] Le-Phuoc, D., Polleres, A., Tummarello, G., and Morbidoni, C.:
‘DERI pipes: visual tool for wiring web data sources’, in Editor
(Ed.)^(Eds.): ‘Book DERI pipes: visual tool for wiring web data
sources’ (2008, edn.), pp.

[8] Morrison, J.P.: ‘Flow-Based Programming: A new approach to
application development’ (CreateSpace, 2010. 2010)

[9] Bauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettsträter, A.,
Stefa, J., and Walewski, J.W.: ‘IoT Reference Model’: ‘Enabling
Things to Talk’ (Springer, 2013), pp. 113-162

[10] IoT-A: ‘Deliverable D1.3 – Updated reference model for IoT ’,
in Editor (Ed.)^(Eds.): ‘Book Deliverable D1.3 – Updated
reference model for IoT ’ (2012, v1.5 edn.), pp.

[11] Haag, A., Goronzy, S., Schaich, P., and Williams, J.: ‘Emotion
recognition using bio-sensors: First steps towards an automatic
system’: ‘Affective dialogue systems’ (Springer, 2004), pp. 36-
48

[12] Pramudianto, F., Indra, I.R., and Jarke, M.: ‘Model Driven
Development for Internet of Things Application Prototyping’, in
Editor (Ed.)^(Eds.): ‘Book Model Driven Development for
Internet of Things Application Prototyping’ (Knowledge
Systems Institute Graduate School, 2013, edn.), pp.

[13] Spencer, R.: ‘The streamlined cognitive walkthrough method,
working around social constraints encountered in a software
development company’, in Editor (Ed.)^(Eds.): ‘Book The
streamlined cognitive walkthrough method, working around
social constraints encountered in a software development
company’ (ACM, 2000, edn.), pp. 353-359

[14] Locke, D.: ‘MQ Telemetry Transport (MQTT) V3. 1 Protocol
Specification’, IBM developerWorks Technical Library],
available at http://www. ibm.
com/developerworks/webservices/library/ws-mqtt/index. html,
2010

[15] Hunkeler, U., Truong, H.L., and Stanford-Clark, A.: ‘MQTT-
S—A publish/subscribe protocol for Wireless Sensor Networks’,
in Editor (Ed.)^(Eds.): ‘Book MQTT-S—A publish/subscribe
protocol for Wireless Sensor Networks’ (IEEE, 2008, edn.), pp.
791-798

[16] Bali, M.: ‘Drools JBoss Rules 5.0 Developer's Guide’ (Packt
Publishing Ltd, 2009. 2009)

[17] Kitchenham, B., Pickard, L., and Pfleeger, S.L.: ‘Case studies for
method and tool evaluation’, IEEE software, 1995, 12, (4), pp.
52-62

[18] Zheng, L., and Nakagawa, H.: ‘OPC (OLE for process control)
specification and its developments’, in Editor (Ed.)^(Eds.):
‘Book OPC (OLE for process control) specification and its
developments’ (IEEE, 2002, edn.), pp. 917-920

[19] ISO: ‘ISO 9241-11: Ergonomic Requirements for Office Work
with Visual Display Terminals (VDTs): Part 11: Guidance on
Usability’, in Editor (Ed.)^(Eds.): ‘Book ISO 9241-11:
Ergonomic Requirements for Office Work with Visual Display
Terminals (VDTs): Part 11: Guidance on Usability’ (1998, edn.),
pp.

[20] Lewis, J.R.: ‘Psychometric evaluation of the post-study system
usability questionnaire: The PSSUQ’, in Editor (Ed.)^(Eds.):
‘Book Psychometric evaluation of the post-study system
usability questionnaire: The PSSUQ’ (SAGE Publications, 1992,
edn.), pp. 1259-1260

[21] Lewis, J.R.: ‘ IBM computer usability satisfaction
questionnaires: psychometric evaluation and instructions for use
’ , International Journal of Human‐Computer Interaction,
1995, 7, (1), pp. 57-78

