MPReSS

(FP7 614100)

D3.5 Templates and Integration Support Tool

30.03.2016 - Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

c * K %
* *
* *

Conselho Nacional de Desenvolvimento * 4 x

Cientifico e Tecnoldgico

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico
Obijective I1CT-2013.10.2 EU-Brazil research and development Cooperation


http://www.cnpq.br/index.htm

IMPReSS D3.5 Templates and Integration Support Tool

Document control page

Document file: IMPRESS D3.5_templates_and_integration_support_tool_v1.0.docx
Document version: 1.0

Document owner: Enrico Ferrera (ISMB)

Work package: WP3 Resource Abstraction and IoT Communication Infrastructure
Task: T3.1 Resource Adaptation Interface and Integration Support tool
Deliverable type: P

Document status: X] approved by the document owner for internal review

X] approved for submission to the EC

Document history:

Version| Author(s) Date Summary of changes made

0.1 Enrico Ferrera (ISMB) 08.01.2016 | First draft

0.2 Davide Conzon (ISMB) 20.01.2016 |Introduction and Integration Support
Tool section

0.3 Enrico Ferrera (ISMB) 21.02.2016 |Explanation about the deviation from
the DOW point of view

0.4 Enrico Ferrera (ISMB) 15.03.2016 |Sections finalization. Deliverable ready
for peer review.

0.5 Enrico Ferrera (ISMB) 30.03.2016 |Documents modified according to
comments from peer review.

1.0 Enrico Ferrera (ISMB) 30.03.2016 |Deliverable ready to be submitted.

Internal review history:

Reviewed by Date Summary of comments
Trine F. Sgrensen 29.03.2016 |Checked Lessons Learned and
Requirements section. Accepted.
Peeter Kool (CNet) 30.03.2016 | Accepted with minor comments
Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

Document version: 1.0 Page 2 of 15 Submission date: 30.03.2016




IMPReSS D3.5 Templates and Integration Support Tool

Index:

1. Executive SUMMAIY ..iicciiiieirntrstrstrassrassrasssasssasssasssasssasssasssanssanssnnsnnnsss 4

R 41 oo Y [T of o o o T 5
B2 = T Yo o o 18 [ o Vo I PP 5
2.2 Resource Adaptation Interface — RAIL......ciiiiiiiiiiiii i eae s 5

3. IoT Resource templates and Integration Support Tool .......cccvcmvmvivennannas 7
3.1Lesson Learned and deviation from the DOW .......ccoiiiiiiiiiiiiiii e, 7
3.210T RESOUIrCE TeMPIateS .ottt e e e e e aaeaas 9
3.3Integration SUPPOrt TOOl . e 11

4. CONCIUSIONS .iueiuierierierrersersessassasmassassasssssssssnssnssassassasssssnssansansansansansansansans 14

LI & = =] = T ol == 15

Document version: 1.0 Page 3 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

1. Executive summary

The goal of this deliverable is twofold: firstly, it aims to describe Resource Adaptation Interface (RAI) in its
improvements respect to the description reported into D3.1 — Resource Adaptation Interface Framework.
Secondly, it describes the model the RAI uses for describing resources both for development of RAI's Device
Manager and registration of virtual IoT Resource on Resource Catalogue (see D3.3 — Resource and Service
Discovery Solutions).

Document version: 1.0 Page 4 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

2.

2.1

2.2

Introduction

Background

The Internet-of-Things (IoT) consists in a holistic interaction among objects, devices, systems, services
and people based on a general-purpose infrastructure on top of which is possible to develop complex
applications and services enabling “smart society”. It leverages a plethora of heterogeneous objects,
each one providing specific functionalities that are accessible through specific communication protocols.
For this reason, an abstraction and adaptation layer is necessary, in order to blend the access of many
different resources in a common language and set of procedures. Standing to [1], an IoT platform
architecture is layered as shown in Figure 1. The Object Abstraction component is the very low layer of
an IoT platform and it is located just before the IoT objects, taking part of the IoT ecosystem.

18] — Z

Applicat T

g % 5 pplications L5

5 oY

Service v ‘%

Composition g >

0

5 [

Service 42

Management 2 1

e fle\/fm g g

Object 5

eeooe Abstraction F
4 " 4 & A
v v v v

@ * & Q’;L ng Objects

Figure 1: IoT platform architecture

Resource Adaptation Interface, or RAI, aims at cover the role of such abstraction layer. More
specifically, RAI is a framework that collects a set of existing classes and methods that can be used in
order to monitor and control application-level resources. In fact, RAI aims to abstract the concept of
resource (i.e. physical devices or third-party systems), providing a virtual “device” that can be used to
seamlessly communicate with resources despite of technology-specific implementation details. RAI aims
to ease and speed up the integration of application-level resources within IMPReSS platform. The main
goal of the Resource Adaptation Interface is to integrate and expose the features provided by
heterogeneous physical and non-physical resources (e.g. sensors or actuators, personal devices of
engaged citizens, services providing public data), providing to the IMPReSS platform a uniform way to
communicate with them, despite the differences in term of hardware and software.

RAI is located on the extreme edge of the IMPReSS platform, just before the hardware and software
resources, and can cooperate with the LinkSmart middleware, which the platform is based on. The
heterogeneous nature of physical devices requires finding a way to interact with the resources. For this
reason, the architecture of the RAI has been designed to be modular, in order to make it extensible
through the addition of new resource drivers abstracting new, previously unhandled, entities. RAI can
abstract both physical resources (e.g. sensors, actuators) and third-party services (e.g. existing
platform such as Xively [2], weather forecast web service, etc.).

Resource Adaptation Interface — RAI

The RAI architecture is composed by three layers, completely decoupled from each other. In this
way, it is possible to change one of them, without requiring many modifications to the others.

Document version: 1.0 Page 5 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

The RAI virtualizes each resource as a virtual Device that exposes features or functionalities,
provided by physical devices or third-party services, through a set of methods and parameters
defined by specific Java interfaces.

The interfaces provided by RAI are used by the Local Resource Manager (see D4.2 — Device and
Subsystem Resource Management) to interact with the available resources. The methods
defined by the specific resources interfaces are passed as parameters to the method
requestResource(String applD, String operation) provided by the LRM APIs.

In Figure 2 is shown the layered architecture of the Resource Adaptation Interface.

‘ ‘ ( HTTPREST | [  xwmpp |
HTTP REST mart
L L ( marmr [ ueer )
E o . .
i & = 3k
RAI API

RAIl Core

SpuEWWoY

Events
Byuogy

Discovery

RAI Device Managers

Kinect Kinect Plugwise Plugwise P. Hue P. Hue Xively Kively EnOcean EnQcean

Discovery Virtual Discovery Virtual Discovery Virtual Discovery Virtual Discovery Virtual
Manager Resource Manager Resource Manager Resource Manager Resource Manager Resource

Figure 2 - Resource Adaptation Interface Architecture

The lower layer of the architecture consists in a set of technology-specific DeviceManager(s) classes
that are responsible for the actual integration of different resources. These components are able to
handle specific types of networks and furthermore, they contain the implementation of specific
device discovery features. The device-level discovery topic is deeply described in D3.2 — Resource
and Service Discovery.

A set of application-level resource models, contained in a dedicated repository, are used for the
virtual device interface definition. The modelled interfaces are implemented with specific commands
depending on the specific resource to be integrated. For the first implementation of the RAI, the
models consist just in a bunch of Java interfaces that define a basic nhumber of methods/services
provided by the most common device types. For next versions of RAI, it is going to be investigated
the use of ontology descriptions for resource models.

The middle layer is the RAI core, which is in charge to map the southbound devices and to notify
upper layers about each network changing.

The upper layer is responsible for the exposition of the methods/services provided by the resources.
This layer is made of the APIs offered by the RAI core, in order to retrieve and manage virtual
devices and call their resource-specific methods.

Document version: 1.0 Page 6 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

3. IoT Resource templates and Integration Support Tool

3.1 Lesson Learned and deviation from the DoW

The description of WP3 reported into the IMPReSS Document of Work, or DoW, states the following:

"This work package is responsible for providing software components and tools to the IMPRESS platform to
enable seamless and easier interoperability with the available application-domain heterogeneous resources.
The objectives of WP3 are related to the implementation of a resource adaptation framework and a relevant
development toolkit as well as the design and the implementation of a lightweight network communication
and management infrastructure. To enable seamless and automatic virtualization of such heterogeneous
resources (i.e. devices, systems and services), this WP will exploit the results of the ebbits project and
extend the LinkSmart middleware with a lightweight standardized abstraction layer, namely Resource
Adaptation Interface (RAL). Such adaptation layer will be designed in order to be executed in devices with
limited resources e.g., ARM-based hardware platforms. In addition, this WP will provide the necessary
Development Toolkit allowing developers to rapidly integrate devices, systems and sub-systems present in
the reference smart society environment into the overall IoT platform. Such toolkit will leverage on an
extendable collection of RAI templates to easy the implementation of technology-specific RAI modules. The
provided templates will support technologies in the energy efficiency domain including legacy technologies
such as PLCs, fieldbus metering devices, emerging technologies such as ZigBee, 6LowPAN and classical IoT
solutions like EPC Global based RFID tags and readers, and NFC tags. These technologies will be iteratively
and further identified in the requirement engineering process of the project to ensure that the results of the
project will have a direct substantial impact for the modern and smart society development. Besides
templates, IMPRESS platform will support the developers with a model driven development tool allowing
them to design and implement the layer of resources adaptation rapidly. ”

The original idea at project proposal time was to provide to the users of the IMPReSS platform a
development tool that would have to ease the integration process of physical resources. More specifically,
other than the resource abstraction layer itself, the idea was also to create a tool for writing code for a
faster integration of resources leveraging predefined resource templates modelling the specific technology of
the new resource to be integrated. These templates would have to be used for automatically generate most
part of the code, which was supposed to be the same for all physical devices sharing common
communication technology. The work of the developer would have consisted just in writing few lines for
complementing the code with device-specific implementations.

In D2.1.2 — Requirement and Lessons Learned report, the two lessons learned reported in the following
table are described.

LL No. Experience and knowledge gained Lesson Learned
WP3-3 The classification of resources with respect to | Gateway communication protocol
the type of wireless communication classification is more useful

technology adopted is not useful the design
the RAI modules. The integration is made at
Gateway level.

WP3-4 Automatic generation mechanisms
can be used to support the
development of Device Managers.

Device Managers handling different As a result, a new requirement has

technologies still share some part of source been created: IMP-41 RAI shall

code provide a tool that help developer
while creating new device
managers.

Document version: 1.0 Page 7 of 15 Submission date: 30.03.2016



IMPReSS

D3.5 Templates and Integration Support Tool

These two Lessons Learned were identified one year ago, in February 2015, and are still true in their
Experience and knowledge gained description but while working on the requirements resulting from
them we outlined some thoughts, which are described in the following statements:

The classification of resources with respect to the type of wireless communication technology
adopted is not useful for developing the RAI drivers. The integration is made considering the
gateway communication technology.

The majority of commercial devices have a gateway that does not expose a standard application
profile but just a proprietary way to interact with the WSAN that it manages. For example:

o Plugwise -> ZigBee network with proprietary gateway REST protocol
o PhilipsHue -> ZigBee network with proprietary gateway REST protocol

Some commercial devices implement standard application profiles that are exposed by their
gateways. In these cases, once a Device Manager has been developed it can be fully reused for
every single device implementing that standard application profile. There is no need to have a
tool that automatically generates a bunch of common code to be complemented with device
specific implementations.

The common lines of source code shared by different Device Managers are static code that can
be moved from Device Managers classes to RAI core classes in order to furtherly reduce the
code size of the Device Manager reducing consequently the effort requested to the developer.

Making some code optimization, the Device Managers can be reduced to just the minimum
amount of code needed to develop specific technology-dependant implementations.

The tool that minimizes the amount of code to be implemented during physical device
abstraction is the RAI itself. The common code is contained in RAI core. The technology-specific
code is the Device Manager.

We still need some device models in order to describe the services exposed by themselves. This
models, or templates, must be used for generating the APIs that must be used in order to
interact with integrated devices. For example:

o A temperature sensor must expose a getTemperature service;
o A smart plug must expose switchOn/switchOff and getPower services;

The templates describe devices according to their type and services that are able to provide,
independently from the implemented communication technology or standard.

e Anyway, an IMPReSS platform user still needs a tool that eases and speeds the usage of Resource
Adaptation Interface according to the actual physical devices that are meant to be added to the
platform.

Following these statements, the Lessons Learned can be declined in the following way:

LL No. Experience and knowledge gained Lesson Learned

WP3-3 The classification of resources with respect to | Gateway communication protocol
the type of wireless communication classification is more useful
technology adopted is not useful the design
the RAI modules. The integration is made at
Gateway level.

WP3-4.1 RAI code has to be optimized in

order to move static code out from
Device Managers. Device Managers
have to contain just code relevant
to the specific technology to be
integrated.

Device Managers handling different
technologies still share some static source
code

Document version: 1.0 Page 8 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

WP3-4.1 Support mechanisms can be used to
help the integration of relevant
In order to plug just needed Device Managers | Device Managers in the platform. As

in RAI, the platform managers need a result, a new requirement has
programming skills. This makes the platform been created: IMP-41.1 RAI shall
deployment error prone. provide a tool that help managers

while integrating relevant devices
during platform deployment.

During the last year of IMPReSS project, we aimed to work on these statements. More specifically, we
refactored RAI improving it in order to reduce to the minimum the amount of code needed to implement
Device Managers. All the specific code for the relevant device technology communication is delegated to
the development of just one class: DeviceManager class.

In the remaining part of this deliverable, will be described how we dealt with the open issues stated
above in this document. Furthermore, the templates used for modelling devices will be described.
Finally, the revised Integration Support Tool will be shown.

3.2 IoT Resource Templates

RAI uses a set of templates in order to describe resources. These templates are used to define the interface
of virtual devices, or IoT Resources, generated by RAI and at the same time the same templates is sent to
the IoT Resource Catalogue in order to register the resources available in the IMPReSS platform. IoT
Resource Catalogue provides the means to store metadata regarding the services provided by IoT
Resources. IoT Resource services descriptions are expressed in an extended version of SCPD (Service
Control Protocol Description) which is the standard for service descriptions in DLNA/UPnP. An example of the
SCPD description is shown below, see Figure 3.

The reason for using the extended SCPD format is that it is well defined and used for service discovery as
well that it is possible to describe services independently of their implementation. This makes it possible to
describe REST based services which do not really have any formal description language.
There are two ways to register an IoTResource, i.e. service, with the IoT Resource Catalogue:

e UPnP Discovery using SSDP and SCPD

e SELF Registration using HTTP or MQTT

IMPReSS users are supported while creating new SCPD templates by a dedicated tool. This tool has been
developed during the course of the project and is described in D7.2.2 — Integrated Component Platform

prototypes.

If an IoTResource supports the UPnP Protocol the IoTResource will register automatically with the IoT
Resource Catalogue. If a service is integrated using the developer tools this information will be created
mostly automatically and the service will be discovered dynamically by UPnP as well. But it also possible to
manually register the service in the IoT Resource Catalogue if one prefers by using the RegisterResource
action of the catalogue service of the IoTResourceCatalogue.SCPD templates of all device available in the
IMPReSS platform can be fetched through an HTTP GET at the following URL:

http://{RAI_IP}:{RAI_PORT}/devices/{Resource_ID}/scpd

Document version: 1.0 Page 9 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

v irool xnlns="wrn:schenas-upnp-org device-1-27>
¥ {apecVers o
najoryle majors
<ninradd minory
<fapecVersiony
¥odevices
¢1-- UPn® Elements --»
tdeviceTypesurn: schemas-upnp-org: ToTdeyice: smartplug: 14 /deviceTypes
¢presertationlRL»hitp: /136,192, 36. 221 R38R/ ¢ /presentat LonllRL >
¢frlendlyName:Plugaise SmartPlug BIBDED-INSTANT _POWER</friendlyMams:
nanufac turersPlugal ses/ manufac turers
nanufac turerURL shitp: //wen. 15mb. i< /manufac turerURLs
vinodellescription:
A SnartPlug device cornected to a Plugeise netwirk.
¢/modelDescriptiony
nodelNamezsmartplugs/modelane:
<iode Humber »1¢ /iode INumber:
<UDM>uuid - B8BTS~ ¢ 13- 3d58-Boda-c 181 a0h35aae [UDH>
¢!-- Resource Catalogue Fix for 0G0 SensorThings APT --»
vinetadata wnlns="ToT"s
{"1d": "Gooealbe 7okl Aded 217 £9381005 Jedbat o110 ah T S FE2TTHeBRa20G 607" , "Deseripthon ™ "The SnartPlug conected to the Plugnise network.”,"Locations™:[{ Tine":"2016-83-28722:11:42. 7881" , "Geometry":
{"l.)'pe" “Polnt”, "coordinates™: (577,58 8] }}], "Datastreans”: [ {"id": "F50E807IR0EA0 LA B0aT AbdteBEet bladBedSc BAUFIbOS 1527137 e 1882FS" , "OservedPraperty™:
+"e2eR3B5181 3ece 1497 140F 5011 cFFiAbaRieBEthbe JetibTbac e BT al8ad" , "Uni tifMeasurement " "Watts" |}, { "1d": "ceelfaabaliddl ceTABARTR Toc Flif fEbe2SadBdfdsa 0AT0AE0B4a087 12082 " , "DbservedProperty ™
{"i|.1" "Bfdeccd59RObGAFho 37 2d104 204 840480 T aehd 1 2 112005080 2 ead B438E" , "Uni tOfMeacurement " "Watts" |}, { "1d": "eBo50c A2bBecd: Tibe c968ad 145 ahat TFetbddofan GedibattRidetad 135", "hservedProperty™:
{"1d": "3 1bORES4cCbBOET 241 6540 9BUSTT T 22ebA 342 Fiet SOTELIRTT2 FLORF268D" , “Uni tOfMeasurement”  "Hatls" } },{" 10" "S1a90edd 300080 ec TE0be a3 addb TRac 12330154 308646F L 3327FIF 27022502 ", "DhservedProper ty”™
{"1d" ¢ "ald151491RF1 48404851 30T ef R FhIBIAT 11661797 TRaFedA anthedbal” , "Unit O Measurenant " "Natts" } ]}
¢ /metadetay
¢1-- CHet extension Elements --»
(IoTresturceld wlns="ToT"»082107d9-c33a-3068-Bdd6- 181 003 5aae  ToTresourc elds
<gateway xnlns="ToT"»138.192.86. 221: 88BR:/gatenay>
Lerrornessage mmlns="IoT" >
networkType xnlns="ToT" :Plugwised networkTypesr
pualTd xmlng="ToT"@81107d5-c334-3068-Rddi-c181a9b15aaed /pualldy
{power xmlns="ToT" 8. 84/ poners
¢1d xnlns="TeT">B1BDES-INSTANT_POWER:/Ld:
cunit wmlne="ToT"sWattsd funits
cupdatedat smlng="ToT™>2816-83-28T22:31:39 4972 fuplatedat:
vosupportedlomand smlns="ToT"»
{turndff=it. ismb. pertlab. pwal.api.devices conmands. inpl.neter, TurnOffMeteril8c5fe2, getPower=it. isnb.pertlab. pwal.apl.devices.commands. impl. meter. GetPowerMeterfidadsfl,
turnOn=it. dsnb. pertlab, peal. apl. devices, commands. Impl meter. TurndnMeterg2oddss, Ts0n=it. fonb.pertlab. pual.apl. devices. commands. impl.meter. Ts0nMetarglBidad |
¢/ support edlomnand:
¢location wmlns="ToT"»577.8 588.8¢/location:
¢Lype amlng="ToT":EmartPlug: /Lypa:
cexpiresdt amlng="ToT"»2816-83-28T22:31: 48 4572 fexpiresaty
cconfiguration nlng="ToT">1t. isnb.pertlab. pwal. apl. smpp. PicForngl380686: /configurationy
¢lastHeasurement xnlns="ToT"»2016-81-26T22:31: 39, 4972/ Las tMeasurenant
engttBrokerT® smlns="ToT »tep: /138,192, 85.32¢ /myt throker TPy
engttBrokerPort xnlns="ToT"»1883</nqtthrokerforty
vingttTopics xmlns="ToT">
vimgLiTopic snlns="ToT" Lype="netadata™:
{inpress/netadata/ iotentity /8821b7d9-c 33a- 3060-Bd6-c 18145035048
¢mgtiTopic»
vimgLiTopic snlns="ToT" Lype="observation™
{ inpressfobservat ion/ iotentity/B821b749-c33a- 1d60-Bdu6-c 181 a%b 35 a8
¢mgtiTopic»
vimgLiTopic snlns="ToT" Lype="observatlondGl">
fv2fobservation/BasTTdTE7c12429bH a2bbIF1T adakaddad 7642 FaaF 11553783 ce b BA2 dFe] /2ol e 26001 FUI36RSTA25e5eT 5407 ac 26 1der a7Guc dbe BaT 9B FETef bEdal2
¢mgtiTopic»
vimgLiTopic snlns="ToT" Lype="observatlondGl">
fv2fobservation/BasTTdTE7c12429bH a2bbIF1T adakaddad 7642 FaaF 11553783 ce e BA2 e/ efdlall 6429 3008 200072 1 96T ei5e 08 adet aadBr FROEA £A5hhE2 10564 T
¢fmgtiTopic:
¢/mgtiToplcs:
1= UPnP Elements --»
voseryicelisty
v {Garyiiey
dserviceTypesurn: schemas-upnp-org  snartplugservice: :1¢/serviceTypes
woserviceldy
urnischemas-upnp-org snartplugservice Ba2IbTd9-c33a-3068-0d0E-c 1810035401
fserviceldy
¥ ACFOURL:
_urm:schenas -upng-org: Lamartplugseryice @821b705-33a-3062- Blda-c181a0b35aae: 1 sipd. xnl
</ SCPOURL
wcontrolURLy
_urn:schenas -upng-org: smartplugseryice ga210709-033a-3d68-B006- 181003520 1 _control
<fcontrollRL:
¥ ceventSublURLs
_urn:schenas -upng-org: smartplugseryice ga210709-£33a-3068-B008- 1814003520 1 _event
<feventsublRL
Lfservices
fservicellsty
<fdevices
<froots

Figure 3: Example of a service description in SCPD

Document version: 1.0 Page 10 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

In Figure 4 is shown a list of the devices modelled so far and supported by the RAL

v Hi itismb.pertlab.pwal.api.devices.model
DE,‘ Accelerometer,java
Eﬁ‘ AirCualitySensor.java
D‘E,‘ ContactSensor,java
Eﬁ‘ DewPointSensor.java
DE,‘ DistanceSensorjava
Eﬁ‘ FakeControllableThermometer.java
[# FillLevel java
Eﬁ‘ FlowMeter java
DE,‘ HumiditySensor,java
Eﬁ‘ Kinect.java
D‘E,‘ Light5ensor.java
[J} Location java
DE,‘ Meter.java
Eﬁ‘ MO25ensor.java
D‘E,‘ MoiseSensorjava
Eﬁ‘ OccupancySensorjava
DE,‘ OsxyMeter.java
Eﬁ‘ PhilipsHue.java
D‘E,‘ PhMeter.java
Eﬁ‘ PressureSensorjava
DE,‘ PulseMeter.java
Eﬁ‘ Resistancejava
D‘E,‘ RockerSwitch java
Eﬁ‘ Semaphore.java
DE,‘ SimpleFillLevelSensorjava
Eﬁ‘ SittingsCounter.java
D‘E,‘ Sphygmemanometer.java
Eﬁ‘ Thermometer.java
DE,‘ TransitsCounter,java
[} Unitjava
D‘E,‘ VehicleCounter,java
Eﬁ‘ VehicleSpeed,java
DE,‘ WasteBin.java

Eﬁ‘ WaterPump.java
Figure 4: List of modelled devices

3.3 Integration Support Tool

The Integration Support Tool allows IMPReSS platform users to integrate easily and rapidly
physical devices, needed to implement the desired IoT application, into the local IMPReSS
platform instance. This tool consists in a local web interface that allows configuring the
adaptation layer of the IMPReSS platform, i.e. the RAL.

Web interface allows users to configure, monitor and test the relevant RAI instance through a
web browser.

As indicated in D4.2 - Device and Subsystem Resource Management, the RAI is a sub-
component of the IoT Resource, which acts as a service proxy. The IoT Resource architecture
with the RAI is shown in Figure 5. The role of the RAI is to abstract physical resources and
expose their functionalities in a common way through the provided API. The Local Resource
Manager can interact with the RAI using the exposed API, handling thus, the requests received
by the IMPReSS applications. Other than REST APIs useful for its monitoring and control, the

Document version: 1.0 Page 11 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

IoT Resource provides also a Web Interface used for its setup and configuration. Particularly, it
allows to plug and play specific Resource Managers in order to drive physical resource that
IMPReSS platform users have previously supplied in order to develop the desired IoT
application.

.[ REST APIs

( Local Resource Manager APIs |

Access Controller

Scheduler

YIDOVYNVIN IDUNOSTH TVOO1

AXOYd DIANIS

—[ Resource Adaptation Interface

1 11

APPLICATION LEVEL RESOURCES

Figure 5 - Service proxy architecture

You may consider an IMPReSS IoT Resource as a box that is initially empty.

Through the Integration Support Tool web interface (see Figure 6), the IMPReSS platform
users can download desired Device Managers and rapidly install them locally, without any
programming skills. In the same way, users can remove no more useful Device Managers in
order to optimize performance and resource allocation. She/he can stop Device Managers
without necessarily remove them from the local IoT Resource instance and then restart them
in a second time; this feature is useful mainly for maintenance purposes. Through this web
application is even possible to manage Resource Manager updates, whenever they are
available.

Document version: 1.0 Page 12 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

@ Configuration

Configuration

Total available device managers: 5

Devices managers

Network Description Download/Remove

Xivel Xivel
Y g DOWN

g

Plugwise Plugwise

PhilipsHue Philips Hue using Bridge

Enocean Manager for enocean devices

18 HE

Kinect Manager for Kinect cams

Figure 6: IMPReSS IoT Resource Integration Support Tool web interface

This web interface leverages the communication infrastructure described in D7.3.2 - Final
Design and Implementation of the Configuration and Composition Manager and in [3].

An installation wizard procedure has been designed to guide the user into the different
configuration tasks. Once launched, the Composition GUI reads its Platform Configuration File
loading the values, including the web link to download an xml file containing the updated list of
the available Device Managers. Using these data, users can fill a form and save their personal
settings, related to XMPP server configurations, as Internet Protocol (IP) address, hostname,
listening port and pub/sub node. After saving above information, the Integration Support Tool
tries to connect to the local XMPP server. If the connection fails, the web interface displays an
error message and let user to try to establish the connection again. Once the connection is
established, users can access all the functionalities of the interface. This interface is
dynamically built using the list of available Resource Managers downloaded from the web link.
The GUI provides, for each bundle, the following operations:

e Download/remove: when the user clicks the download button, the management
module of the configuration infrastructure (i.e. CC_M) download the Device
Managers from the remote repository and install it in the local RAI instance.
Once the bundle is installed, if no more needed, it can be removed.

e Update: when a new version of an installed bundle is available on the repository,
the GUI alerts the user. Once the Update button is clicked, the software
automatically uninstalls the previous module and replaces it with the new one.

e Start/stop: this operation allows starting and stopping the execution of the
bundles installed.

The interface provides also a visual indication of the status of Device Managers, in order to
inform in real-time the user if the Device Manager is correctly running, or if there is some error
in its execution.

Furthermore, the interface can be used to configure one Device Manager: when the user clicks
the configure button, the GUI queries the CC_M, to retrieve the configuration parameters for
the corresponding bundle (e.g. data related to sensors, addresses, communication protocol,
thresholds, or sampling rate). The GUI uses this information to build a form, which has to be
filled by the user to indicate the value to set for each parameter. Once saved the values set
are set in the bundle, through the CC_M.

Document version: 1.0 Page 13 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

4. Conclusions

In this deliverable is reported how physical devices have been modelled through SCPD
templates. Furthermore, Integration Support Tool has been presented. It has been designed
targeting IMPReSS platform managers and maintainers.

Integration Support Tool has been evaluated by students and IT managers during the
evaluation meeting organized in Recife, Brazil, in November 2015. It received a very good
feedback in terms of attractiveness, efficiency, perspicuity, dependability, stimulation and
novelty, according to the User Experience Questionnaire (UEQ), which consists of twenty-six
statements or items plus six additional statements that have been added in order to stress
certain quality aspects that were important to be evaluated. More information about evaluation
process and results can be found in D8.5 - Platform Analysis and Feedback Report.

Document version: 1.0 Page 14 of 15 Submission date: 30.03.2016



IMPReSS D3.5 Templates and Integration Support Tool

5. References

[1]. L. Atzori, A. Iera e G. Morabito, «The Internet of Things: A survey», Computer
networks 54(15), pp. 2787-2805, 2010.

[2]. «Xively,» 2016. [Online].

[3]. E. Ferrera, D. Conzon, P. Brizzi, L. Gomes, M. Jentsch, P. Kool, «xXMPP-based

Network Management Infrastructure for Agile IoT Application Deployment and
Configuration», ICIN 2016 conference on Innovations in Clouds, Internet and Networks,
2016

Document version: 1.0 Page 15 of 15 Submission date: 30.03.2016



